Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2007_17_2_a10, author = {Tarapata, Z.}, title = {Selected multicriteria shortest path problems: {An} analysis of complexity, models and adaptation of standard algorithms}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {269--287}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a10/} }
TY - JOUR AU - Tarapata, Z. TI - Selected multicriteria shortest path problems: An analysis of complexity, models and adaptation of standard algorithms JO - International Journal of Applied Mathematics and Computer Science PY - 2007 SP - 269 EP - 287 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a10/ LA - en ID - IJAMCS_2007_17_2_a10 ER -
%0 Journal Article %A Tarapata, Z. %T Selected multicriteria shortest path problems: An analysis of complexity, models and adaptation of standard algorithms %J International Journal of Applied Mathematics and Computer Science %D 2007 %P 269-287 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a10/ %G en %F IJAMCS_2007_17_2_a10
Tarapata, Z. Selected multicriteria shortest path problems: An analysis of complexity, models and adaptation of standard algorithms. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 2, pp. 269-287. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a10/
[1] Bernstein D. and Kelly S. (1997): Solving a best path problem when the value of time function is nonlinear. - Research paper, Princeton University.
[2] Brumbaugh-Smith J. and Shier D. (1989): An empirical investigation of some bicriterion shortest path algorithms. - Europ. J. Oper. Res., Vol. 43, No. 2, pp. 216-224.
[3] Carraway R.L., Morin T.L. and Moskovitz H. (1990): Generalized dynamic programming for multicriteria optimization. - Europ. J. Oper. Res., Vol. 44, No. 1, pp. 95-104.
[4] Cidon I., Rom R. and Shavitt Y. (1997): Multi-path routing combined with resource reservation. - Proc. 16th Annual Joint Conf. IEEE Computer and Communications Societies, INFOCOM'97, Kobe, Japan, pp. 92-100.
[5] Cidon I., Rom R. and Shavitt Y. (1999): Analysis of multipath routing. - IEEE/ACM Trans. Netw., Vol. 7, No. 6, pp. 885-896.
[6] Climaco J.C.M. and Martins E.Q.V. (1982): A bicriterion shortest path algorithm. -Europ. J. Oper. Res., Vol. 11, No. 1, pp. 399-404.
[7] Climaco J., Craveirinha J. and Pascoal M. (2002): A bicriterion approach for routing problems in multimedia networks. - Networks, Vol. 41, No. 4, pp. 206-220.
[8] Corley H.W. and Moon I.D. (1985): Shortest paths in networks with vector weights. - J. Optim. Th. Applic., Vol. 46, No. 1, pp. 79-86.
[9] Coutinho-Rodrigues J.M., Climaco J.C.N. and Current J.R. (1999): An intercative biobjective shortest path approach: Searching for unsupported nondominated solutions. - Comput. Oper. Res., Vol. 26, No. 8, pp. 789-798.
[10] Cox R.G. (1984): Routing of hazardous material. - Ph.D. thesis, School of Civil and Environmental Engineering, Cornell University, Ithaca, NY.
[11] Current J.R., ReVelle C.S. and Cohon J.L. (1990): An interactive approach to identify the best compromise solution for two objective shortest path problems. - Comput. Oper. Res., Vol. 17, No. 2, pp. 187-198.
[12] Dial R. (1979): A model and algorithm for multicriteria routemode choice.-Transport. Res., Vol. 13B, No. 4, pp. 311-316.
[13] Djidjev H., Pantziou G. and Zaroliagis C.D. (1995): On-line and dynamic algorithms for shortest path problems. - Lect. Notes Comput. Sci., Vol. 900, pp. 193-204.
[14] Ehrgott M. (1997): Multiple Criteria Optimization - Classification and Methodology. - Aachen: Shaker Verlag.
[15] Ehrgott M. and Gandibleux V. (2000): A survey and annotated bibliography of multiobjective combinatorial optimization. - OR Spektrum, Vol. 22, pp. 425-460.
[16] Ehrgott M. and Gandibleux X. (Eds.) (2002): Multiple Criteria Optimization-State of the Art Annotated Bibliographic Surveys. -Boston, MA: Kluwer.
[17] Engberg D., Cohon J. and ReVelle C. (1983): Multiobjective siting of a natural gas pipeline. - Proc. 11th Ann. Pittsburgh Conf. Modeling and Simulation, Pittsburgh, USA, pp. 137-145.
[18] Eppstein D. (1999): Finding the K shortest paths. - SIAM J. Comput., Vol. 28, No. 2, pp. 652-673.
[19] Ergun F., Sinha R. and Zhang L. (2002): An improved FPTAS for restricted shortest path. - Inf. Process. Lett., Vol. 83, No. 5, pp. 287-291.
[20] Fujimura K. (1996): Path planning with multiple objectives. - IEEE Robot. Automat. Mag., Vol. 3, No. 1, pp. 33-38.
[21] Gabrel V. and Vanderpooten D. (1996): Generation and selection of efficient paths in a multiple criteria graph: The case of daily planning the shots taken by a satellite with an interactive procedure. - Tech. Rep. 136, LAMSADE, Universitè Paris Dauphine, France.
[22] Garey M. and Johnson D. (1979): Computers and Intractability: A Guide to the Theory of NP Completeness. - San Francisco, CA: W.H. Freeman.
[23] Golden B.L. and Skiscim C.C. (1989): Solving k-shortest and constrained shortest path problems efficiently. - Netw. Optim. Appl. 20, Texas A University, College Station.
[24] Halder D.K. and Majumber A. (1981): A method for selecting optimum number of stations for a rapid transit line: An application in Calcutta tube rail, In: Scientific Management of Transport Systems (N.K. Jaiswal, Ed.). - New York: North-Holland, pp. 97-108.
[25] Hansen P. (1979a): Bicriterion path problems, In: Multiple Criteria Decision Making Theory and Application (G. Fandel and T. Gal, Ed.).- Berlin: Springer, pp. 109-127.
[26] Hansen P. (1979b): Bicriterion Path Problems. - Proc. 3rd Conf. Multiple Criteria Decision Making-Theory and Applications, Lect. Notes Econ. Math. Syst., Vol. 117, pp. 109-127.
[27] Hartley R. (1985): Vector optimal routing by dynamic programming, In: Mathematics of Multiobjective Optimization (P. Serahni, Ed.).-Vienna: Springer, pp. 215-224.
[28] Hassin R. (1992): Approximation schemes for the restricted shortest path problem.-Math. Oper. Res., Vol. 17, No. 1, pp. 36-42.
[29] Henig M.I. (1985): The shortest path problem with two objective functions. - Europ. J. Oper. Res., Vol. 25, No. 22, pp. 281-291.
[30] Henig M.I. (1994): Efficient interactive methods for a class of multiattribute shortest path problems. - Manag. Sci., Vol. 40, No. 7, pp. 891-897.
[31] Huarng F., Pulat P.S. and Shih L. (1996): A computational comparison of some bicriterion shortest path algorithms. - J. Chinese Inst. Ind. Eng., Vol. 13, No. 2, pp. 121-125.
[32] Kerbache L. and Smith J. (2000): Multi-objective routing within large scale facilities using open finite queueing networks. -Europ. J. Oper. Res., Vol. 121, No. 1, pp. 105-123.
[33] Korzan B. (1982): Method of determining compromise paths in unreliable directed graphs.-Bulletin of theMilitary University of Technology, Warsaw, Vol. XXXI, No. 7, pp. 21-36, (in Polish).
[34] Korzan B. (1983a): Method of determining nondominated paths in unreliable directed graphs. - Bulletin of the Military University of Technology, Warsaw, Vol. XXXII, No. 11, pp. 21-33, (in Polish).
[35] Korzan B. (1983b): Paths optimization in unreliable directed graphs. - Bulletin of the Military University of Technology, Warsaw, Vol. XXXII, No. 6, pp. 69-85, (in Polish).
[36] Kostreva M.M. and Wiecek M.M. (1993): Time dependency in multiple objective dynamic programming. - J. Math. Anal. Appl., Vol. 173, No. 1, pp. 289-307.
[37] Li C.L., McCormick S.T. and Simchi-Levi D. (1992): Finding disjoint paths with different path-costs: Complexity and algorithms. - Networks, Vol. 22, No. 7, pp. 653-667.
[38] Lorenz D.H. and Raz D. (2001): A simple efficient approximation scheme for the restricted shortest path problem. - Oper. Res. Letters, Vol. 28, No. 1, pp. 213-219.
[39] Loui R.P. (1983): Optimal paths in graphs with stochastic or multidimensional weights.-Comm.ACM,Vol. 26,No. 9, pp. 670-676.
[40] Martins E.Q.V. (1984): On a multicriteria shortest path problem. - Europ. J. Oper. Res., Vol. 16, No. 1, pp. 236-245.
[41] Martins E.Q.V. and Climaco J.C.N. (1981): On the determination of the nondominated paths in a multiobjective network problem. - Meth. Oper. Res., Vol. 40, pp. 255-258.
[42] Martins E.Q.V. and Santos J.L.E. (1999): The labelling algorithm for the multiobjective shortest path problem. - Tech. Rep., Universidade de Coimbra, Portugal.
[43] Modesti P. and Sciomachen A. (1998): A utility measure for finding multiobjective shortest paths in urban multimodal transportation networks.-Europ. J. Oper. Res., Vol. 111,m No. 3, pp. 495-508.
[44] Mote J., Murthy I. and Olson D. (1991): A parametric approach to solving bicriterion shortest path problems. - Europ. J. Oper. Res., Vol. 53, No. 1, pp. 81-92.
[45] Murthy I. and Her S.S. (1992): Solving min-max shortest-path problems on a network.-Naval Res. Log., Vol. 39, No. 1, pp. 669-683.
[46] Murthy I. and Olson D. (1994): An interactive procedure using domination cones for bicriterion shortest path problems. - Europ. J. Oper. Res., Vol. 72, No. 2, pp. 418-432.
[47] Papadimitriou C. and YannakakisM. (2000): On the Approximability of Trade-offs and Optimal Access of Web Sources. - Proc. 41st Symp. Foundations of Computer Science, FOCS, Redondo Beach, CA, pp. 86-92.
[48] Pelegrin B. and Fernandez P. (1998): On the sum-max bicriterion path problem.-Comput. Oper. Res., Vol. 25, No. 12, pp. 1043-1054.
[49] Rana K. and Vickson R.G. (1988): A model and solution algorithm for optimal routing of a time-chartered containership. - Transport. Sci., Vol. 22, No. 2, pp. 83-96.
[50] Sancho N.G.F. (1988): A new type of multiobjective routing problem. - Eng. Optim., Vol. 14, No. 1, pp. 115-119.
[51] Schrijver A. (2004): Combinatorial Optimization. - Berlin: Springer.
[52] Schrijver A. and Seymour P. (1992): Disjoint paths in a planar graph-A general theorem. - SIAM J. Discr. Math., Vol. 5, No. 1, pp. 112-116.
[53] Sherali H., Ozbay K. and Subramanian S. (1998): The timedependent shortest pair of disjoint paths problem: Complexity, models and algorithms. - Networks, Vol. 31, No. 4, pp. 259-272.
[54] Sigal E., Pritsker A. and Solberg J. (1980): The stochastic shortest route problem.-Oper. Res., Vol. 28, No. 5, pp. 1122-1129.
[55] Silva R. and Craveirinha J. (2004): An Overview of Routing Models for MPLS Networks. - Proc. 1st Workshop Multicriteria Modelling in Telecommunication Network Planning and Design, Faculty of Economics of the University of Coimbra, Coimbra, Portugal, pp. 17-24.
[56] Skriver A.J.V. and Andersen K.A. (2000): A label correcting approach for solving bicriterion shortest path problems. - Comput. Oper. Res., Vol. 27, No. 6, pp. 507-524.
[57] Suurballe J.W. and Tarjan R.E. (1984): A quick method for finding shortest pairs of disjoint paths. - Networks, Vol. 14, No. 2, pp. 325-336.
[58] Tarapata Z. (1999): Optimization of many tasks sending in an unreliable parallel computing system.- Proc. NATOReg. Conf. Military Communication and Information Systems, Zegrze, Poland, Vol. III, pp. 245-254.
[59] Tarapata Z. (2000): Multi-paths optimization in unreliable timedependent networks. - Proc. NATO Reg. Conf. Military Communication and Information Systems, Zegrze, Poland, Vol. I, pp. 181-189.
[60] Tarapata Z. (2003): Military route planning in battlefield simulation: effectiveness problems and potential solutions. - J. Telecomm. Inf. Technol., No. 4, pp. 47-56.
[61] Tsaggouris G. and Zaroliagis Ch. (2005): Improved FPTAS for multiobjective shortest paths with applications. - Tech. Rep. No. TR 2005/07/03, Research Academic Computer Technology Institute, Petras, Greece.
[62] Tung C.T. and Chew K.L. (1988): A bicriterion Pareto-optimal path algorithm.-Asia-Pacific J. Oper. Res., Vol. 5, No. 2, pp. 166-172.
[63] Tung C.T. and Chew K.L. (1992): A multicriteria Pareto-optimal path algorithm. - Europ. J. Oper. Res., Vol. 62, No. 2, pp. 203-209.
[64] Vassilvitskii S. and Yannakakis M. (2004): Efficiently computing sufficient trade-off curves.-Lect. Notes Comput. Sci., mVol. 3142, pp. 1201-1213.
[65] Warburton A. (1987): Approximation of Pareto optima in multiple-objective, shortest-path problems. - Oper. Res., Vol. 35, No. 1, pp. 70-79.
[66] White D.J. (1987): The set of efficient solutions for multiple objective shortest path problems. - Comput. Oper. Res., Vol. 9, No. 2, pp. 101-107.
[67] Wijeratne A.B., Turnquist M.A. and Mirchandani P.B. (1993): Multiobjective routing of hazardous materials in stochastic networks. - Europ. J. Oper. Res., Vol. 65, No. 1, pp. 33-43.