Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2007_17_1_a1, author = {Boudellioua, M. S.}, title = {Equivalence and reduction of delay-differential systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {15--22}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_1_a1/} }
TY - JOUR AU - Boudellioua, M. S. TI - Equivalence and reduction of delay-differential systems JO - International Journal of Applied Mathematics and Computer Science PY - 2007 SP - 15 EP - 22 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_1_a1/ LA - en ID - IJAMCS_2007_17_1_a1 ER -
Boudellioua, M. S. Equivalence and reduction of delay-differential systems. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 1, pp. 15-22. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_1_a1/
[1] Boudellioua M.S. (2006): An equivalent matrix pencil for bivariate polynomial matrices. - Int. J. Appl. Math. Comput. Sci., Vol. 16, No. 2, pp. 175-181.
[2] Byrnes C.I., Spong M.W. and Tarn T.J. (1984): A several complex variables approach to feedback stabilization of linear neutral delay-differential systems. - Math. Syst. Theory, Vol. 17, No. 2, pp. 97-133.
[3] Fuhrmann P.A. (1977): On strict system equivalence and similarity. - Int. J. Contr., Vol. 25, No. 1, pp.5-10.
[4] Johnson D.S. (1993): Coprimeness in multidimensional system theory and symbolic computation. -Ph.D. thesis, Loughborough University of Technology, UK.
[5] Levy B.C. (1981): 2-D polynomial and rational matrices and their applications for the modelling of 2-D dynamical systems. - Ph.D. thesis, Stanford University, USA.
[6] Pugh A.C., McInerney S.J., Boudellioua M.S. and Hayton G.E. (1998a): Matrix pencil equivalents of a general 2-D polynomial matrix. - Int. J. Contr., Vol. 71, No. 6, pp. 1027-1050.
[7] Pugh A.C.,McInerney S.J., Boudellioua M.S., Johnson D.S. and Hayton G.E. (1998b): A transformation for 2-D linear systems and a generalization of a theorem of Rosenbrock. - Int. J. Contr., Vol. 71, No. 3, pp. 491-503.
[8] Pugh A.C., McInerney S.J. and El-Nabrawy E.M.O. (2005a): Equivalence and reduction of 2-D systems.-IEEE Trans. Circ. Syst., Vol. 52, No. 5, pp. 371-275.
[9] Pugh A.C., McInerney S.J. and El-Nabrawy E.M.O. (2005b): Zero structures of n-D systems. - Int. J. Contr., Vol. 78, No. 4, pp. 277-285.
[10] Pugh A.C., McInerney S.J., Hou M. and Hayton G.E. (1996): A transformation for 2-D systems and its invariants. - Proc. 35th IEEE Conf. Decision and Control, Kobe, Japan, pp. 2157-2158.
[11] Rosenbrock H.H. (1970): State Space and Multivariable Theory. - London: Nelson-Wiley.
[12] Sebek M. (1988): One more counterexample in n-D systems - Unimodular versus elementary operations.-IEEE Trans. Autom. Contr., Vol. AC-33(5), pp. 502-503.
[13] Zerz E. (2000): Topics in Multidimensional Linear Systems Theory. - London: Springer.