Equivalence and reduction of delay-differential systems
International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 1, pp. 15-22.

Voir la notice de l'article provenant de la source Library of Science

A new direct method is presented which reduces a given high-order representation of a control system with delays to a firstorder form that is encountered in the study of neutral delay-differential systems. Using the polynomial system description (PMD) setting due to Rosenbrock, it is shown that the transformation connecting the original PMD with the first-order form is Fuhrmann’s strict system equivalence. This type of system equivalence leaves the transfer function and other relevant structural properties of the original system invariant.
Keywords: polynomial matrix description, neutral delay-differential systems, strict system equivalence, determinantal ideals, Gröbner bases
Mots-clés : opis macierzowy, układ z opóźnieniem, równoważność systemu, bazy Gröbnera
@article{IJAMCS_2007_17_1_a1,
     author = {Boudellioua, M. S.},
     title = {Equivalence and reduction of delay-differential systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {15--22},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_1_a1/}
}
TY  - JOUR
AU  - Boudellioua, M. S.
TI  - Equivalence and reduction of delay-differential systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2007
SP  - 15
EP  - 22
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_1_a1/
LA  - en
ID  - IJAMCS_2007_17_1_a1
ER  - 
%0 Journal Article
%A Boudellioua, M. S.
%T Equivalence and reduction of delay-differential systems
%J International Journal of Applied Mathematics and Computer Science
%D 2007
%P 15-22
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_1_a1/
%G en
%F IJAMCS_2007_17_1_a1
Boudellioua, M. S. Equivalence and reduction of delay-differential systems. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 1, pp. 15-22. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_1_a1/

[1] Boudellioua M.S. (2006): An equivalent matrix pencil for bivariate polynomial matrices. - Int. J. Appl. Math. Comput. Sci., Vol. 16, No. 2, pp. 175-181.

[2] Byrnes C.I., Spong M.W. and Tarn T.J. (1984): A several complex variables approach to feedback stabilization of linear neutral delay-differential systems. - Math. Syst. Theory, Vol. 17, No. 2, pp. 97-133.

[3] Fuhrmann P.A. (1977): On strict system equivalence and similarity. - Int. J. Contr., Vol. 25, No. 1, pp.5-10.

[4] Johnson D.S. (1993): Coprimeness in multidimensional system theory and symbolic computation. -Ph.D. thesis, Loughborough University of Technology, UK.

[5] Levy B.C. (1981): 2-D polynomial and rational matrices and their applications for the modelling of 2-D dynamical systems. - Ph.D. thesis, Stanford University, USA.

[6] Pugh A.C., McInerney S.J., Boudellioua M.S. and Hayton G.E. (1998a): Matrix pencil equivalents of a general 2-D polynomial matrix. - Int. J. Contr., Vol. 71, No. 6, pp. 1027-1050.

[7] Pugh A.C.,McInerney S.J., Boudellioua M.S., Johnson D.S. and Hayton G.E. (1998b): A transformation for 2-D linear systems and a generalization of a theorem of Rosenbrock. - Int. J. Contr., Vol. 71, No. 3, pp. 491-503.

[8] Pugh A.C., McInerney S.J. and El-Nabrawy E.M.O. (2005a): Equivalence and reduction of 2-D systems.-IEEE Trans. Circ. Syst., Vol. 52, No. 5, pp. 371-275.

[9] Pugh A.C., McInerney S.J. and El-Nabrawy E.M.O. (2005b): Zero structures of n-D systems. - Int. J. Contr., Vol. 78, No. 4, pp. 277-285.

[10] Pugh A.C., McInerney S.J., Hou M. and Hayton G.E. (1996): A transformation for 2-D systems and its invariants. - Proc. 35th IEEE Conf. Decision and Control, Kobe, Japan, pp. 2157-2158.

[11] Rosenbrock H.H. (1970): State Space and Multivariable Theory. - London: Nelson-Wiley.

[12] Sebek M. (1988): One more counterexample in n-D systems - Unimodular versus elementary operations.-IEEE Trans. Autom. Contr., Vol. AC-33(5), pp. 502-503.

[13] Zerz E. (2000): Topics in Multidimensional Linear Systems Theory. - London: Springer.