Guided local search for query reformulation using weight propagation
International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 4, pp. 537-549.

Voir la notice de l'article provenant de la source Library of Science

A new technique for query reformulation that assesses the relevance of retrieved documents using weight propagation is proposed. The technique uses a Guided Local Search (GLS) in conjunction with the latent semantic indexing model (to semantically cluster documents together) and Lexical Matching (LM). The GLS algorithm is used to construct a minimum spanning tree that is later employed in the reformulation process. The computations done for Singular Value Decomposition (SVD), LM and the minimum spanning tree are necessary overheads that occur only initially and all subsequent work is based on them. Our experimental results reveal the effectiveness of the new technique.
Keywords: relevance feedback, clustering, latent semantic, query reformulation
Mots-clés : sprzężenie zwrotne, grupowanie, semantyka ukryta, kwerenda zapytań
@article{IJAMCS_2006_16_4_a9,
     author = {Moghrabi, I.},
     title = {Guided local search for query reformulation using weight propagation},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {537--549},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a9/}
}
TY  - JOUR
AU  - Moghrabi, I.
TI  - Guided local search for query reformulation using weight propagation
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2006
SP  - 537
EP  - 549
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a9/
LA  - en
ID  - IJAMCS_2006_16_4_a9
ER  - 
%0 Journal Article
%A Moghrabi, I.
%T Guided local search for query reformulation using weight propagation
%J International Journal of Applied Mathematics and Computer Science
%D 2006
%P 537-549
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a9/
%G en
%F IJAMCS_2006_16_4_a9
Moghrabi, I. Guided local search for query reformulation using weight propagation. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 4, pp. 537-549. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a9/

[1] Baeza-Yates R. and Ribeiro-Neto B. (1999): Modern Information Retrieval.- New York: Prentice Hall.

[2] Daniels J. and Rissland, E. (1995): EXPRESS: A case based approach to intelligent information retrieval. - Proc. SIGIR'95 Conf., Seattle, WA, USA 1995, pp. 31-43.

[3] Dunlop M.D. (1997): The effect of accessing non-matching documents on relevance feedback. - ACM Trans. Inf. Syst., Vol. 15, No. 2, pp. 137-153.

[4] Epp S.S. (1990): Discrete Mathematics with Applications. - London: Wadsworth Publishing Company.

[5] Letsche T.A. and Berry M.W. (1997): Large-scale information retrieval with latent semantic indexing. -Inf. Sci., Vol. 9, No. 2, pp. 111-121.

[6] Lopez-Pujalte C., Guerrero-Bote V.P., de Moya-Anegon F. (2002): A test of genetic algorithms in relevance feedback. - Inf. Process. Manag., Vol. 38, No. 7, pp. 793-805.

[7] Ruthven I., Tombros A. and Jose J. (2001): A study on the use of summaries and summary-based query expansion for a question-answering task. - Proc. 23rd BCS European Annual Colloquium on Information Retrieval Research, Berlin, Germany, pp. 48-54.

[8] Ruthven I., White R. and Jose J.M. (2001): Web document summarization: A task-oriented evaluation. - Proc. Int. Workshop Digital Libraries, Proc. 12-th Int. Conf. Database and Expert Systems Applications, (DEXA 2001), Munich, Germany, pp. 52-61.

[9] Van R. (1979): Information Retrieval, 2nd Ed., London: Mc-Graw Hill.

[10] Voudouris C. and Tsang E. (1994): Tunneling algorithm for partial CSPs and combinatorial optimization problems. - Tech. Rep. No. CSM-213, Dept. of Computer Science, University of Essex, Colchester, UK.

[11] Voudouris C. (1997): Guided Local Search for Combinatorial Optimisation Problems. - Ph.D. thesis, Dept. Computer Science, University of Essex, Colchester, UK.