Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2006_16_4_a6, author = {Michalak, K. and Kwa\'snicka, H.}, title = {Correlation-based feature selection strategy in classification problems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {503--511}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a6/} }
TY - JOUR AU - Michalak, K. AU - Kwaśnicka, H. TI - Correlation-based feature selection strategy in classification problems JO - International Journal of Applied Mathematics and Computer Science PY - 2006 SP - 503 EP - 511 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a6/ LA - en ID - IJAMCS_2006_16_4_a6 ER -
%0 Journal Article %A Michalak, K. %A Kwaśnicka, H. %T Correlation-based feature selection strategy in classification problems %J International Journal of Applied Mathematics and Computer Science %D 2006 %P 503-511 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a6/ %G en %F IJAMCS_2006_16_4_a6
Michalak, K.; Kwaśnicka, H. Correlation-based feature selection strategy in classification problems. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 4, pp. 503-511. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a6/
[1] Blake C. and Merz C.(2006): UCI Repository of Machine Learning Databases. - Available at: http://www.ics.uci.edu/~mlearn/MLRepository.html.
[2] Cover T.M. and van Campenhout J.M. (1977): On the possible ordering in the measurement selection problem. - IEEE Trans. Syst. Man Cybern., SMC-07(9), pp. 657-661.
[3] Das S. (2001): Filters, wrappers and a boosting-based hybrid for feature selection. - Int. Conf. Machine Learning, San Francisco, Ca, USA, pp. 74-81.
[4] Duda R., Hart P. and Stork D. (2001): Pattern Classification. - New York: Wiley.
[5] Kittler J. (1978): Pattern Recognition and Signal Processing. - The Netherlands: Sijhoff and Noordhoff, pp. 4160.
[6] Kohavi R. and John G.H. (1997): Wrappers for feature subsetselection. -Artif. Intell., Vol. 97, Nos. 1-2, pp. 273-324.
[7] Kwaśnicka H. and Orski P. (2004): Genetic algorithm as an attribute selection tool for learning algorithms, Intelligent Information Systems 2004, New Trends in Intelligent Information Processing and Web Mining, Proc. Int. IIS: IIP WM04 Conf. -Berlin: Springer, pp. 449-453.
[8] Pękalska E., Harol A., Lai C. and Duin R.P.W. (2005): Pairwise selection of features and prototypes, In: Computer Recognition Systems (Kurzyński M., Puchała E., Woźniak M., Zolnierek, Eds.).-Proc. 4-th Int. Conf. Computer Recognition Systems, CORES'05, Advances in Soft Computing, Berlin: Springer, pp. 271-278.
[9] Pudil P., Novovicova J. and Kittler J. (1994): Floating search methods in feature selection. - Pattern Recogn. Lett., Vol. 15, No. 11, pp. 1119-1125.
[10] Xing E., Jordan M. and Karp R. (2001): Feature selection for high-dimensional genomic microarray data. - Proc. Int. Conf. Machine Learning, San Francisco, CA, USA, pp. 601-608.