Robust stabilization of discrete linear repetitive processes with switched dynamics
International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 4, pp. 441-462.

Voir la notice de l'article provenant de la source Library of Science

Repetitive processes constitute a distinct class of 2D systems, i.e., systems characterized by information propagation in two independent directions, which are interesting in both theory and applications. They cannot be controlled by a direct extension of the existing techniques from either standard (termed 1D here) or 2D systems theories. Here we give new results on the design of physically based control laws. These results are for a sub-class of discrete linear repetitive processes with switched dynamics in both independent directions of information propagation.
Keywords: repetitive processes, 2D systems, switched dynamics, stabilization, uncertainty
Mots-clés : proces powtarzalny, system 2D, stabilizacja, niepewność
@article{IJAMCS_2006_16_4_a2,
     author = {Bochniak, J. and Ga{\l}kowski, K. and Rogers, E. and Kummert, A.},
     title = {Robust stabilization of discrete linear repetitive processes with switched dynamics},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {441--462},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a2/}
}
TY  - JOUR
AU  - Bochniak, J.
AU  - Gałkowski, K.
AU  - Rogers, E.
AU  - Kummert, A.
TI  - Robust stabilization of discrete linear repetitive processes with switched dynamics
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2006
SP  - 441
EP  - 462
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a2/
LA  - en
ID  - IJAMCS_2006_16_4_a2
ER  - 
%0 Journal Article
%A Bochniak, J.
%A Gałkowski, K.
%A Rogers, E.
%A Kummert, A.
%T Robust stabilization of discrete linear repetitive processes with switched dynamics
%J International Journal of Applied Mathematics and Computer Science
%D 2006
%P 441-462
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a2/
%G en
%F IJAMCS_2006_16_4_a2
Bochniak, J.; Gałkowski, K.; Rogers, E.; Kummert, A. Robust stabilization of discrete linear repetitive processes with switched dynamics. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 4, pp. 441-462. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a2/

[1] Amann N., Owens D.H. and Rogers E. (1998): Predictive optimal iterative learnig control. - Int. J. Contr., Vol. 69, No. 2, pp. 203-226.

[2] Bachelier O., Bernussou J., de Oliveira M.C. and Geromel J.C. (1999): Parameter dependent Lyapunov control design: Numerical evaluation. - Proc. 38-th Conf. Decision and Control, Phoenix, USA, pp. 293-297.

[3] Benton S.E. (2000): Analysis and Control of Linear Repetitive Processes. - Ph.D. thesis, University of Southampton, UK.

[4] Bochniak J., Gałkowski K., Rogers E., Mehdi D., Bachelier O. and Kummert A. (2006): Stabilization of discrete linear repetitive processes with switched dynamics. - Multidim. Syst. Signal Process., Vol. 17, No. 2-3, pp. 271-293.

[5] Boyd S., Feron E., El Ghaoui L. and Balakrishnan V. (1994): Linear Matrix Inequalities in System and Control Theory. - Philadelphia: SIAM.

[6] D'Andrea R. and Dullerud G.E. (2003): Distributed control design for spatially interconnected systems. - IEEE Trans. Automat. Contr., Vol. 48, No. 9, pp. 1478-1495.

[7] Du C. and Xie L. (1999): Stability analysis and stabilisation of uncertain two-dimensional discrete systems: An LMI approach. - IEEE Trans. Circ. Syst. I: Fundam. Theory Applic., Vol. 46, No. 11, pp. 1371-1374.

[8] Edwards J.B. (1974): Stability problems in the control of multipass processes. - Proc. IEE, Vol. 121, No. 11, pp. 1425- 1432.

[9] Gałkowski K., Rogers E., Xu S., Lam J. and Owens D.H. (2002): LMIs-A fundamental tool in analysis and controller design for discrete linear repetitive processes. - IEEE Trans. Circ. Syst. I: Fundam. Theory Applic., Vol. 49, No. 6, pp. 768-778.

[10] Longman R. (2003): On the interaction between theory, experiments and simulation in developing practical learning control algorithms. - Int. J. Appl. Math. Comput. Sci., Vol. 13, No. 1, pp. 101-112.

[11] Ratcliffe J.D., Hatonen J.J., Lewin P.L., Rogers E., Harte T.J. and Owens D.H. (2005): P-type iterative learning control for systems that contain resonance. - Int. J. Adapt. Contr. Sig. Process., Vol. 19, No. 10, pp. 769-796.

[12] Roberts P.D. (2002): Two-dimensional analysis of an iterative nonlinear optimal control algorithm. - IEEE Trans. Circ. Syst. I: Fundam. Theory Applic., Vol. 49, No. 6, pp. 872-878.

[13] Rogers E. and Owens D.H. (1992): Stability Analysis for Linear Repetitive Processes. - Lect. Notes Contr. Inf. Sci., Vol. 175, Berlin, Germany: Springer-Verlag.

[14] Smyth K.J. (1992): Computer Aided Analysis for Linear Repetitive Processes. - Ph.D. thesis, University of Strathclyde, Glasgow, UK.