Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2006_16_4_a2, author = {Bochniak, J. and Ga{\l}kowski, K. and Rogers, E. and Kummert, A.}, title = {Robust stabilization of discrete linear repetitive processes with switched dynamics}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {441--462}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a2/} }
TY - JOUR AU - Bochniak, J. AU - Gałkowski, K. AU - Rogers, E. AU - Kummert, A. TI - Robust stabilization of discrete linear repetitive processes with switched dynamics JO - International Journal of Applied Mathematics and Computer Science PY - 2006 SP - 441 EP - 462 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a2/ LA - en ID - IJAMCS_2006_16_4_a2 ER -
%0 Journal Article %A Bochniak, J. %A Gałkowski, K. %A Rogers, E. %A Kummert, A. %T Robust stabilization of discrete linear repetitive processes with switched dynamics %J International Journal of Applied Mathematics and Computer Science %D 2006 %P 441-462 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a2/ %G en %F IJAMCS_2006_16_4_a2
Bochniak, J.; Gałkowski, K.; Rogers, E.; Kummert, A. Robust stabilization of discrete linear repetitive processes with switched dynamics. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 4, pp. 441-462. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a2/
[1] Amann N., Owens D.H. and Rogers E. (1998): Predictive optimal iterative learnig control. - Int. J. Contr., Vol. 69, No. 2, pp. 203-226.
[2] Bachelier O., Bernussou J., de Oliveira M.C. and Geromel J.C. (1999): Parameter dependent Lyapunov control design: Numerical evaluation. - Proc. 38-th Conf. Decision and Control, Phoenix, USA, pp. 293-297.
[3] Benton S.E. (2000): Analysis and Control of Linear Repetitive Processes. - Ph.D. thesis, University of Southampton, UK.
[4] Bochniak J., Gałkowski K., Rogers E., Mehdi D., Bachelier O. and Kummert A. (2006): Stabilization of discrete linear repetitive processes with switched dynamics. - Multidim. Syst. Signal Process., Vol. 17, No. 2-3, pp. 271-293.
[5] Boyd S., Feron E., El Ghaoui L. and Balakrishnan V. (1994): Linear Matrix Inequalities in System and Control Theory. - Philadelphia: SIAM.
[6] D'Andrea R. and Dullerud G.E. (2003): Distributed control design for spatially interconnected systems. - IEEE Trans. Automat. Contr., Vol. 48, No. 9, pp. 1478-1495.
[7] Du C. and Xie L. (1999): Stability analysis and stabilisation of uncertain two-dimensional discrete systems: An LMI approach. - IEEE Trans. Circ. Syst. I: Fundam. Theory Applic., Vol. 46, No. 11, pp. 1371-1374.
[8] Edwards J.B. (1974): Stability problems in the control of multipass processes. - Proc. IEE, Vol. 121, No. 11, pp. 1425- 1432.
[9] Gałkowski K., Rogers E., Xu S., Lam J. and Owens D.H. (2002): LMIs-A fundamental tool in analysis and controller design for discrete linear repetitive processes. - IEEE Trans. Circ. Syst. I: Fundam. Theory Applic., Vol. 49, No. 6, pp. 768-778.
[10] Longman R. (2003): On the interaction between theory, experiments and simulation in developing practical learning control algorithms. - Int. J. Appl. Math. Comput. Sci., Vol. 13, No. 1, pp. 101-112.
[11] Ratcliffe J.D., Hatonen J.J., Lewin P.L., Rogers E., Harte T.J. and Owens D.H. (2005): P-type iterative learning control for systems that contain resonance. - Int. J. Adapt. Contr. Sig. Process., Vol. 19, No. 10, pp. 769-796.
[12] Roberts P.D. (2002): Two-dimensional analysis of an iterative nonlinear optimal control algorithm. - IEEE Trans. Circ. Syst. I: Fundam. Theory Applic., Vol. 49, No. 6, pp. 872-878.
[13] Rogers E. and Owens D.H. (1992): Stability Analysis for Linear Repetitive Processes. - Lect. Notes Contr. Inf. Sci., Vol. 175, Berlin, Germany: Springer-Verlag.
[14] Smyth K.J. (1992): Computer Aided Analysis for Linear Repetitive Processes. - Ph.D. thesis, University of Strathclyde, Glasgow, UK.