Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2006_16_4_a10, author = {Aswani Kumar, Ch. and Srinivas, S.}, title = {Latent semantic indexing using eigenvalue analysis for efficient information retrieval}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {551--558}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a10/} }
TY - JOUR AU - Aswani Kumar, Ch. AU - Srinivas, S. TI - Latent semantic indexing using eigenvalue analysis for efficient information retrieval JO - International Journal of Applied Mathematics and Computer Science PY - 2006 SP - 551 EP - 558 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a10/ LA - en ID - IJAMCS_2006_16_4_a10 ER -
%0 Journal Article %A Aswani Kumar, Ch. %A Srinivas, S. %T Latent semantic indexing using eigenvalue analysis for efficient information retrieval %J International Journal of Applied Mathematics and Computer Science %D 2006 %P 551-558 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a10/ %G en %F IJAMCS_2006_16_4_a10
Aswani Kumar, Ch.; Srinivas, S. Latent semantic indexing using eigenvalue analysis for efficient information retrieval. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 4, pp. 551-558. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a10/
[1] April K. and Pottenger W.M. (2006): A framework for understanding latent semantic indexing performance. - J. Inf. Process. Manag., Vol. 42, No. 1, pp. 56-73.
[2] AswaniKumar Ch., Gupta A., Batool M. and Trehan S. (2005): An information retrieval model based on latent semantic indexing with intelligent preprocessing. - J. Inf. Knowl. Manag., Vol. 4, No. 4, pp. 1-7.
[3] AswaniKumar Ch. and Srinivas S. (2006): On the effect of rank approximation on information retrieval.-Proc. Int. Conf.Systemics Cybernetics and Informatics, Hyderabad, India, pp. 876-880.
[4] Balinski J. and Danilowicz C. (2005): Ranking method based on inter document distances.-Inf. Process. Manag., Vol. 41, No. 4, pp. 759-775.
[5] Bass D. and Behrens C. (2003): Distributed LSI: Scalable concept based information retrieval with high semantic resolution.- Proc. 2003 Text Mining Workshop, San Francisco, CA, USA, pp. 72-82.
[6] Bast H. and Weber I. (2005): Insights from viewing ranked retrieval as rank aggregation.-Proc.Workshop Challenges in Web Information Retrieval and Integration, WIRI05, Tokyo, Japan, pp. 232-239.
[7] Berry M.W. (1992): Large scale singular value computations. - Int. J. Super Comput. Appli., Vol. 6, No. 1, pp. 13-49.
[8] Berry M.W. and Dumasis S.T. (1995): Using linear algebra for intelligent information retrieval. - SIAM Rev., Vol. 37, No. 4, pp. 573-995.
[9] Berry M.W., Drmac Z. and Jessup E.R. (1999): Matrices, vector spaces, and information retrieval. - SIAM Rev., Vol. 41, No. 2, pp. 335-362.
[10] Berry M.W. and Shakhina A.P. (2005): Computing sparse reduced-rank approximation to sparse matrices. - ACM Trans. Math. Software, 2005, Vol. 31, No. 2, pp. 252-269.
[11] Cheng X.Z. and Lafferty J.(2006): A risk minimization framework for information retrieval. - Inf. Process. Manag., Vol. 42, No. 1, pp. 31-55.
[12] Deerwester S. (1990): Indexing by latent semantic analysis. - J. Ameri. Soci. Inf. Sci., Vol. 41, No. 6, pp. 391-407.
[13] Fan J., Ravi K., Littman M.L. and Santosh V. (1999): Efficient singular value decomposition via document samplings. - Tech. Rep. CS-1999-5, Dept. Computer Science, Duke University, North Carolina.
[14] Gao J. and Zhang J. (2003): Sparsification strategies in latent semantic indexing. - Proc. 2003 Mining Workshop, San Francisco, CA, USA, pp. 93-103.
[15] Gao J. and Zhang J. (2005): Clustered SVD strategies in latent semantic indexing.-Inf. Process. Manag., Vol. 41, No. 5, pp. 1051-1063.
[16] Golub G.H. and Van Loan C.F. (1996): Matrix Computations. -Baltimore: The John Hopkins University Press.
[17] Hua Y. (2000): Searching beyond SVD for rank reduction. - Proc. IEEE Workshop Sensor Array and Multi Channel Signal Processing, Cambridge, MA, USA, pp. 395-397.
[18] Husbands P., Simon H. and Ding C. (2001): On the use of singular value decomposition for text retrieval. - SIAM Comput. Inf. Retrieval, pp. 145-156.
[19] Husbands P. and Ding C. (2005): Term norm distribution and its effects on latent semantic indexing. - Inf. Process. Manag., Vol. 41, No. 4, pp. 777-787.
[20] Kontostathis A. and Pottenger W.M. (2002a): Detecting patterns in the latent semantic indexing term-term matrix. - Proc. Workshop Foundations of Data Mining and Discovery, IEEE Int. Conf. DataMining, (ICDM 02), Maeybaski, Japan.
[21] Kontostathis A. and Pottenger W.M. (2002b): A mathematical view of latent semantic indexing: Tracing term cooccurrences. - Tech. Report, LU-CSE-02-006, Lehigh University.
[22] Landauer T.K., Foltz P.W. and Laham D. (1998): Introduction to latent semantic analysis. - Discourse Processes, Vol. 25, pp. 259-284.
[23] Park H. and Elden L. (2003): Matrix rank reduction for data analysis and feature extraction.-Tech. Rep., Dept. Computer Science and Engineering, University of Minnesota.
[24] Praks P., Dvorsky J., Snasel V. and Cernohorsky J.D. (2003):On SVD free latent semantic indexing for image retrieval for application in a hard real time environment. - Proc. IEEE Int. Conf. Industrial Technology, Maribor, Slovenia, pp. 466-471.
[25] Schisler M.L. (2004): Latent semantic indexing: using eigenvalues and the singular value decomposition in lexicographical search techniques. - Tech. Rep., University of Missouri.
[26] Tang J.T. (2003): Application of principle direction divisive partitioning and SVD in information retrieval. - Masters Proj. Rep., Dept. Computer Science, University of Kentucky, Lexington, KY.
[27] Yates R.B. and Neto B.R. (1999): Modern Information Retrieval. - New Delhi: Pearson Education.
[28] Ye Y.Q. (2000): Comparing matrix methods in text-based information retrieval. - Tech. Rep., School of Mathematical Sciences, Peking University.
[29] Zang Z., Zha H. and Simon H. (2002): Low rank approximations with sparse factors: Basic algorithms and error analysis. - SIAM J. Matrix Anal. Appl., Vol. 23, No. 3, pp. 706-727.