Operator-splitting and Lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier-Stokes fluids
International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 4, pp. 419-429.

Voir la notice de l'article provenant de la source Library of Science

We present a numerical simulation of two coupled Navier-Stokes flows, using operator-splitting and optimization-based nonoverlapping domain decomposition methods. The model problem consists of two Navier-Stokes fluids coupled, through a common interface, by a nonlinear transmission condition. Numerical experiments are carried out with two coupled fluids; one with an initial linear profile and the other in rest. As expected, the transmission condition generates a recirculation within the fluid in rest.
Keywords: domain decomposition, duality, conjugate gradient, Navier-Stokes flows
Mots-clés : dwoistość, gradient sprzężony, przepływ Naviera-Stokesa
@article{IJAMCS_2006_16_4_a0,
     author = {Bresch, D. and Koko, J.},
     title = {Operator-splitting and {Lagrange} multiplier domain decomposition methods for numerical simulation of two coupled {Navier-Stokes} fluids},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {419--429},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a0/}
}
TY  - JOUR
AU  - Bresch, D.
AU  - Koko, J.
TI  - Operator-splitting and Lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier-Stokes fluids
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2006
SP  - 419
EP  - 429
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a0/
LA  - en
ID  - IJAMCS_2006_16_4_a0
ER  - 
%0 Journal Article
%A Bresch, D.
%A Koko, J.
%T Operator-splitting and Lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier-Stokes fluids
%J International Journal of Applied Mathematics and Computer Science
%D 2006
%P 419-429
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a0/
%G en
%F IJAMCS_2006_16_4_a0
Bresch, D.; Koko, J. Operator-splitting and Lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier-Stokes fluids. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 4, pp. 419-429. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a0/

[1] Bernardi C., Chacon T., Lewandowski R. and Murat F. (2002) A model for two coupled turbulent fluids I: Analysi of the system.-Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Vol. XIV (Paris, 1997/1998), pp. 69-102, Stud. Math. Appl., Vol. 31, Amsterdam: North-Holland.

[2] Bernardi C., Chacon T., Lewandowski R. and Murat F. (2003): A model for two coupled turbulent fluids II: Numerical analysis of a spectral discretization. - SIAM J. Numer. Anal. Vol. 40, No. 6, pp. 2368-2394.

[3] Bernardi C., Chacon-Rebello T., Gomez-Marmol, Lewandowski R. and Murat F. (2004): A model for two coupled turbulent fluids III: Numerical approximation by finite elements. Numer. Math., Vol. 98, No. 1, pp. 33-66.

[4] Bresch D. and Koko J. (2004): An optimization-based domain decomposition method for nonlinear wall laws in coupled systems.-Math. Models Meth. Appl. Sci., Vol. 14, No. 7, pp. 1085-1101.

[5] Ciarlet P. (1979): The Finite Element Method for Elliptic Problems.- Amsterdam: North-Holland.

[6] Daniel J. (1970): The approximate minimization of functionals. - Englewood Cliffs, NJ: Prentice-Hall.

[7] Du Q. (2001): Optimization based non-overlapping domain decomposition algorithms and their convergence. - SIAM J. Numer. Anal., Vol. 39, No. 3, pp. 1056-1077.

[8] Du Q. and Gunzburger M.D. (2000): A gradient method approach to optimization-based multidisciplinary simulations and nonverlapping domain decomposition algorithms.- SIAM J. Numer. Anal., Vol. 37, No. 5, pp. 1513-1541.

[9] Ekeland I. and Temam R. (1999): Convex Analysis and Variational Problems.- Philadelphia: SIAM.

[10] Glowinski R. (2003): Numerical Methods for Fluids, In: Handbook of Numerical Analysis, Vol. IX, (Ciarlet P.G. and Lions J.L., Eds.), Amsterdam: North-Holland.

[11] Glowinski R. and Le Tallec P. (1989): Augmented Lagrangian and Operator-splitting Methods in Nonlinear Mechanics. -Philadelphia: SIAM.

[12] Glowinski R. and Marocco A. (1975): Sur l'approximation par éléments finis d'ordre un, et la résolution par pénalisation- dualité, d'une classe de problèmes de Dirichlet non linéaires, RAIRO Anal. Num., Vol. 2, No. 2, pp. 41-76.

[13] Glowinski R., Pan T.-W. and Périaux J. (1998): Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies. - Comput. Meth. Appl. Mech. Eng., Vol. 151, No. 1-2, pp. 181-194.

[14] Glowinski R., Pan T.W., Hesla T.I., Joseph D.D. and Périaux J. (2000): A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow. - Comput. Methods Appl. Mech. Eng., Vol. 184, No. 2-4, pp. 241-267.

[15] Gunzburger M.D. and Peterson J. (1999): An optimization based domain decomposition method for partial differential equations. - Comp. Math. Appl., Vol. 37, No. 10, pp. 77-93.

[16] Gunzburger M.D. and Lee H.K. (2000): An optimization-based domain decomposition method for Navier-Stokes equations. - SIAM J. Numer. Anal., Vol. 37, No. 5, pp. 1455-1480.

[17] Koko J. (2002): An optimization based domain decomposition method for a bonded structure. - Math. Models Meth. Appl. Sci., Vol. 12, No. 6, pp. 857-870.

[18] Koko J. (2006): Uzawa conjugate gradient domain decomposition methods for coupled Stokes flows. - J. Sci. Comput., Vol. 26, No. 2, pp.195-215.

[19] Lewandowski R. (1997): Analyse Mathématique et Océanographie. - Paris: Masson.

[20] Lions J.L., Temam R. and Wang S. (1993): Models for the coupled atmosphere and ocean. (CAO I,II).-Comput. Mech. Adv., Vol. 1, No. 1, pp. 120.

[21] Luenberger D. (1989): Linear and Nonlinear Programming. - Reading, MA: Addison Wesley.

[22] Marchuk G.I. (1990): Splitting and alternating direction methods, In: Handbook of Numerical Analysis Vol. I, (Ciarlet P.G. and Lions J.L., Eds.).- Amsterdam: North-Holland, pp. 197-462.

[23] Miglio E., Quarteroni A. and Saleri F. (2003): Coupling of free-surface and groundwater flows. - Comput. Fluids, Vol. 32, No. 1, pp. 73-83.

[24] Pan T.W., Joseph D.D. and Glowinski R. (2005): Simulating the dynamics of fluid-ellipsoid interactions. - Comput. Struct., Vol. 83, No. 6-7, pp. 463-478.

[25] Polak E. (1971): Computational Methods in Optimization. - New York: Academic Press.

[26] Quarteroni A. and Valli A. (1999): Domain decomposition methods for partial differential equations. - Oxford: Oxford University Press.

[27] Suquet P.M. (1988): Discontinuities and plasticity, In: Nonsmooth Mechanics and Applications, (Moreau J.J. and Panagiotopoulos P.D., Eds.). - CISM courses and lectures, New-York: Springer, No. 302, pp. 279-340.