Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2006_16_3_a6, author = {Czaba\'nski, R.}, title = {Extraction of fuzzy rules using deterministic annealing integrated with \ensuremath{\varepsilon}-insensitive learning}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {357--372}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_3_a6/} }
TY - JOUR AU - Czabański, R. TI - Extraction of fuzzy rules using deterministic annealing integrated with ε-insensitive learning JO - International Journal of Applied Mathematics and Computer Science PY - 2006 SP - 357 EP - 372 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_3_a6/ LA - en ID - IJAMCS_2006_16_3_a6 ER -
%0 Journal Article %A Czabański, R. %T Extraction of fuzzy rules using deterministic annealing integrated with ε-insensitive learning %J International Journal of Applied Mathematics and Computer Science %D 2006 %P 357-372 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_3_a6/ %G en %F IJAMCS_2006_16_3_a6
Czabański, R. Extraction of fuzzy rules using deterministic annealing integrated with ε-insensitive learning. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 3, pp. 357-372. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_3_a6/
[1] Bezdek J.C. (1982): Pattern Recognition with Fuzzy Objective Function Algorithms.- New York: Plenum Press.
[2] Box G.E.P. and Jenkins G.M. (1976): Time Series Analysis. Forecasting and Control. -San Francisco: Holden-Day.
[3] Czabański R. (2003): Automatic Fuzzy If-Then Rules Extraction from Numerical Data. - Ph.D. thesis, Silesian University of Technology, Gliwice, (in Polish).
[4] Czabański R. (2005): Neuro-fuzzy modeling based on deterministic annealing approach. - Int. J. Appl. Math. Comput. Sci., Vol. 15, No. 4, pp. 125-134.
[5] Czogała E. and Łęski J. (1996): A new fuzzy inference system with moving consequents in if-then rules. Application to pattern recognition.-Bull. Polish Acad. Science, Vol. 45, No. 4, pp. 643-655.
[6] Czogała E. and Łęski J. (1999): Fuzzy and Neuro-Fuzzy Intelligent Systems. -Heidelberg: Physica-Verlag.
[7] Czogała E. and Łęski J. (2001): On equivalence of approximate reasoning results using different interpretations of if-then rules. -Fuzzy Sets Syst., Vol. 117, No. 2, pp. 279-296.
[8] German S. and German D. (1984): Stochastic relaxation, Gibbs distribution and the Bayesian restoration in images. - IEEE Trans. Pattern Anal. Mach. Intell., Vol. 6, pp. 721-741.
[9] Ho D. and Kashyap R.L. (1965): An algorithm for linear inequalities and its applications. - IEEE Trans. Elec. Comp., Vol. 14, No. 5, pp. 683-688.
[10] Ho Y.C. and Kashyap R.L. (1966): A class of iterative procedures for linear inequalities. - SIAM J. Contr., Vol. 4, No. 2, pp. 112-115.
[11] Jang J.S.R. (1993): ANFIS: Adaptive-network-based fuzzy inference system. - IEEE Trans. Syst. Man Cybern., Vol. 23, No. 3, pp. 665-685.
[12] Jang J.S.R. and Sun J.S.R. (1993): Functional equivalence between radial basis function networks and fuzzy inference systems. - IEEE Trans. Neural Netw., Vol. 4, No. 1, pp. 156-159.
[13] Jang J.S.R., Sun C.T. and Mizutani E. (1997): Neuro-Fuzzy and Soft Computing. A Computational Approach to Learning and Machine Intelligence. - Upper Saddle River: Prentice-Hall.
[14] Kirkpatrick S., Gelatt C. and Vecchi M. (1983): Optimization by simulated annealing. - Science, Vol. 220, No. 4598, pp. 671-680.
[15] Łęski J. (2002): Improving generalization ability of neuro-fuzzy systems by ε-insensitive learning. - Int. J. Appl. Math. Comput. Sci., Vol. 12, No. 3, pp. 437-447.
[16] Łęski J. (2003a): Neuro-fuzzy system with learning tolerant to imprecision.-Fuzzy Sets Syst., Vol. 138, No. 2, pp. 427- 439.
[17] Łęski J. (2003b): ε-Insensitive learning techniques for approximate reasoning systems.-Int. J. Comput. Cognit., Vol. 1, No. 1, pp. 21-77.
[18] Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H. and Teller E. (1953): Equation of state calculation by fast computing machines. - J. Chem. Phys., Vol. 21, No. 6, pp. 1087-1092.
[19] Mitra S. and Hayashi Y. (2000): Neuro-fuzzy rule generation: Survey in soft computing framework. - IEEE Trans. Neural Netw., Vol. 11, No. 3, pp. 748-768.
[20] Rao A.V., Miller D., Rose K. and Gersho A. (1997): Mixture of experts regression modeling by deterministic annealing. -IEEE Trans. Signal Process., Vol. 45, No. 11, pp. 2811-2820.
[21] Rao A.V., Miller D., Rose K. and Gersho A. (1999): A deterministic annealing approach for parsimonious design of piecewise regression models.-IEEE Trans. Pattern Anal. Mach. Intell., Vol. 21, No. 2, pp. 159-173.
[22] Rose K. (1991): Deterministic Annealing, Clustering and Optimization. -Ph.D. thesis, California Inst. Tech., Pasadena.
[23] Rose K. (1998): Deterministic annealing for clustering, compression, classification, regression and related optimization problems. - Proc. IEEE, Vol. 86, No. 11, pp. 2210-2239.
[24] Vapnik V. (1998): Statistical Learning Theory. - New York: Wiley.
[25] Vapnik V. (1999): An overview of statistical learning theory. - IEEE Trans. Neural Netw., Vol. 10, No. 5, pp. 988-999.
[26] Weigend A.S., Huberman B.A. and Rumelhart D.E. (1990): Predicting the future: A connectionist approach. - Int. J. Neural Syst., Vol. 1, No. 2, pp. 193-209.
[27] Xie X.L. and Beni G. (1991): A validity measure for fuzzy clustering.- IEEE Trans. Pattern Anal. Mach. Intell., Vol. 13, No. 8, pp. 841-847.
[28] Yen J.,Wang L. and Gillespie C.W. (1998): Improving the interpretability of TSK fuzzy models by combining global learning and local learning.-IEEE Trans. Fuzzy Syst., Vol. 6, No. 4, pp. 530-537.