Observer design using a partial nonlinear observer canonical form
International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 3, pp. 333-343.

Voir la notice de l'article provenant de la source Library of Science

This paper proposes two methods for nonlinear observer design which are based on a partial nonlinear observer canonical form (POCF). Observability and integrability existence conditions for the new POCF are weaker than the well-established nonlinear observer canonical form (OCF), which achieves exact error linearization. The proposed observers provide the global asymptotic stability of error dynamics assuming that a global Lipschitz and detectability-like condition holds. Examples illustrate the advantages of the approach relative to the existing nonlinear observer design methods. The advantages of the proposed method include a relatively simple design procedure which can be broadly applied.
Keywords: observer design, canonical form, detectability
Mots-clés : wzorzec projektowy, postać kanoniczna, wykrywalność
@article{IJAMCS_2006_16_3_a4,
     author = {R\"obenack, K. and Lynch, A. F.},
     title = {Observer design using a partial nonlinear observer canonical form},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {333--343},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_3_a4/}
}
TY  - JOUR
AU  - Röbenack, K.
AU  - Lynch, A. F.
TI  - Observer design using a partial nonlinear observer canonical form
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2006
SP  - 333
EP  - 343
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_3_a4/
LA  - en
ID  - IJAMCS_2006_16_3_a4
ER  - 
%0 Journal Article
%A Röbenack, K.
%A Lynch, A. F.
%T Observer design using a partial nonlinear observer canonical form
%J International Journal of Applied Mathematics and Computer Science
%D 2006
%P 333-343
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_3_a4/
%G en
%F IJAMCS_2006_16_3_a4
Röbenack, K.; Lynch, A. F. Observer design using a partial nonlinear observer canonical form. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 3, pp. 333-343. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_3_a4/

[1] Amicucci G. L. and Monaco S. (1998): On nonlinear detectability.- J. Franklin Inst. 335B, Vol. 6, pp. 1105-1123.

[2] Bestle D. and Zeitz M. (1983): Canonical form observer design for non-linear time-variable systems.-Int. J. Contr., Vol. 38, No. 2, pp. 419-431.

[3] Birk J. and Zeitz M. (1988): Extended Luenberger observer for non-linear multivariable systems.-Int. J. Contr., Vol. 47, No. 6, pp. 1823-1836.

[4] Brunovsky P. (1970): A classification of linear controllable systems.- Kybernetica, Vol. 6, No. 3, pp. 173-188.

[5] Gauthier J. P., Hammouri H. and Othman S. (1992): A simple observer for nonlinear systems - Application to bioreactors. - IEEE Trans. Automat. Contr., Vol. 37, No. 6, pp. 875-880.

[6] Hermann R. and Krener A. J. (1977): Nonlinear controllability and observability. - IEEE Trans. Automat. Contr., Vol. AC-22, No.5, pp. 728-740.

[7] Isidori A. (1995): Nonlinear Control Systems: An Introduction, 3-rd Edn. -London: Springer.

[8] Jo N. H. and Seo J. H. (2002): Observer design for non-linear systems that are not uniformly observable.-Int. J. Contr., Vol. 75, No. 5, pp. 369-380.

[9] Kazantzis N. and Kravaris C. (1998): Nonlinear observer design using Lyapunov's auxiliary theorem. - Syst. Contr. Lett., Vol. 34, pp. 241-247.

[10] Keller H. (1986): Entwurf nichtlinearer Beobachter mittels Normalformen. - Düsseldorf: VDI-Verlag.

[11] Krener A. and Xiao M. (2002): Nonlinear observer design in the siegel domain. - SIAM J. Contr. Optim., Vol. 41, No. 3, pp. 932-953.

[12] Krener A., Hubbard M., Karaham S., Phelps A. and Maag B. (1991): Poincaré's linearization method applied to the design of nonlinear compensators. - Proc. Algebraic Computing in Control, Vol. 165 of Lecture Notes in Control and Information Science, Berlin: Springer, pp. 76-114.

[13] Krener A. J. and Isidori A. (1983): Linearization by output injection and nonlinear observers. - Syst. Contr. Lett., Vol. 3, pp. 47-52.

[14] Krener A. J. and Respondek W. (1985): Nonlinear observers with linearizable error dynamics. - SIAM J. Contr. Optim., Vol. 23, No. 2, pp. 197-216.

[15] Lynch A. and Bortoff S. (2001): Nonlinear observers with approximately linear error dynamics: The multivariable case. - IEEE Trans. Automat. Contr., Vol. 46, No. 7, pp. 927-932.

[16] Marino R. and Tomei P. (1995): Nonlinear Control Design: Geometric, Adaptive and Robust. - London: Prentice Hall.

[17] Moore E. H. (1920): On the reciprocal of the general algebraic matrix. -Bull. Amer. Math. Soc., Vol. 26, pp. 394-395.

[18] Mukhopadhyay B. K. and Malik O. P. (1972): Optimal control of synchronous-machine excitation by quasilinearisation techniques. -Proc. IEE, Vol. 119, No. 1, pp. 91-98.

[19] Nijmeijer H. and van der Schaft A. J. (1990): Nonlinear Dynamical Control Systems. -New York: Springer.

[20] Phelps A. R. (1991): On constructing nonlinear observers. - SIAM J. Contr. Optim., Vol. 29, No. 3, pp. 516-534.

[21] Respondek W. (1986): Global aspects of linearization, equivalence to polynomial forms and decomposition of nonlinear control systems. - Proc. Algebraic and Geometric Methods in Nonlinear Control, Dordrecht: Reidel, pp. 257-284.

[22] Respondek W., Pogromsky A. and Nijmeijer H. (2004): Time scaling for observer design with linearizable error dynamics.- Automatica, Vol. 40, No. 2, pp. 277-285.

[23] Röbenack K. and Lynch A. F. (2004): High-gain nonlinear observer design using the observer canonical form. - J. Franklin Institute, submitted.

[24] Rudolph J. and Zeitz M. (1994): A block triangular nonlinear observer normal form. - Syst. Contr. Lett., Vol. 23, pp. 1-8.

[25] Schweitzer G., Bleuler H. and Traxler A. (1994): Active Magnetic Bearings. - Zürich: VDF .

[26] Shim H., Son Y. I. and Seo J. H. (2001): Semi-global observer for multi-output nonlinear systems. - Syst. Contr. Lett., Vol. 42, No. 3, pp. 233-244.

[27] Sontag E. D. and Wang Y. (1997): Output-to-state stability and detectability of nonlinear system. - Syst. Contr. Lett., Vol. 29, No. 5, pp. 279-290.

[28] Wang Y. and Lynch A. (2005): Block triangular observer forms for nonlinear observer design.-Automatica, (submitted).

[29] Wang Y. and Lynch A. (2006): A block triangular form for nonlinear observer design. - IEEE Trans. Automat. Contr., (to appear).

[30] Xia X.-H. and GaoW.-B. (1988): Non-linear observer design by observer canonical form. - Int. J. Contr., Vol. 47, No. 4, pp. 1081-1100.

[31] Xia X. H. and Gao W. B. (1989): Nonlinear observer design by observer error linearization.-SIAM J. Contr. Optim., Vol. 27, No. 1, pp. 199-216.