Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2006_16_3_a3, author = {Kaczorek, T.}, title = {A realization problem for positive continuous-time systems with reduced numbers of delays}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {325--331}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_3_a3/} }
TY - JOUR AU - Kaczorek, T. TI - A realization problem for positive continuous-time systems with reduced numbers of delays JO - International Journal of Applied Mathematics and Computer Science PY - 2006 SP - 325 EP - 331 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_3_a3/ LA - en ID - IJAMCS_2006_16_3_a3 ER -
%0 Journal Article %A Kaczorek, T. %T A realization problem for positive continuous-time systems with reduced numbers of delays %J International Journal of Applied Mathematics and Computer Science %D 2006 %P 325-331 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_3_a3/ %G en %F IJAMCS_2006_16_3_a3
Kaczorek, T. A realization problem for positive continuous-time systems with reduced numbers of delays. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 3, pp. 325-331. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_3_a3/
[1] Benvenuti L. and Farina L. (2004): A tutorial on the positive realization problem. - IEEE Trans. Automat. Contr., Vol. 49, No. 5, pp. 651-664.
[2] Busłowicz M. (1982): Explicit solution of discrete-delay equations. -Found. Contr. Eng., Vol. 7, No. 2, pp. 67-71.
[3] Busłowicz M. and Kaczorek T. (2004): Reachability and minimum energy control of positive linear discrete-time systems with one delay. - Proc. 12-th Mediterranean Conf. Control and Automation, Kasadasi, Izmir, Turkey, (on CDROM).
[4] Farina L. and Rinaldi S. (2000): Positive Linear Systems. Theory and Applications. - New York: Wiley.
[5] Gałkowski K. (2001): State-Space Realizations of Linear 2D Systems with Extension to the General nD (n > 2) Case. - Berlin: Springer.
[6] Kaczorek T. (2002): Positive 1D and 2D Systems. - London: Springer.
[7] Kaczorek T. (2003): Some recent developments in positive systems. - Proc. 7-th Conf. Dynamical Systems Theory and Applications, Łód´z, Poland, pp. 25-35.
[8] Kaczorek T. (2004): Realization problem for positive discretetime systems with delay. - Syst. Sci., Vol. 30, No. 4, pp. 117-130.
[9] Kaczorek T. (2005a): Realization problem for positive continuous-time systems with delays.-Int. J. Comput. Intelligence and Appl., June 5, pp. 1-10.
[10] Kaczorek T. (2005b): Realization problem for positive multivariable continuous-time systems with delays. - IEEE Trans. Automat. Contr., (submitted).
[11] Kaczorek T. and Busłowicz M. (2004): Minimal realization for positive multivariable linear systems with delay. - Int. J. Appl. Math. Comput. Sci., Vol. 14, No. 2, pp. 181-187.
[12] Kaczorek T. and Busłowicz M. (2006): Reachability and minimum energy control of positive discrete-time linear systems with multiple delay in state and control. - Pomiary, Automatyka, Kontrola, PAK 7/8, pp. 31-33.
[13] Xie G. and Wang L. (2003): Reachability and controllability of positive linear discrete-time systems with time-delays, In: Positive Systems, (Benvenuti L., De Santis A. and Farina L., Eds.).-LNCIS 294, Berlin: Springer-Verlag, pp. 377-384.