Node assignment problem in Bayesian networks
International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 2, pp. 233-240

Voir la notice de l'article provenant de la source Library of Science

This paper deals with the problem of searching for the best assignments of random variables to nodes in a Bayesian network (BN) with a given topology. Likelihood functions for the studied BNs are formulated, methods for their maximization are described and, finally, the results of a study concerning the reliability of revealing BNs’ roles are reported. The results of BN node assignments can be applied to problems of the analysis of gene expression profiles.
Keywords: biostatistics, Bayesian networks, maximum likelihood, confidence intervals
Mots-clés : biostatystyka, sieci bayesowskie, przedział ufności
@article{IJAMCS_2006_16_2_a7,
     author = {Pola\'nska, J. and Borys, D. and Pola\'nski, A.},
     title = {Node assignment problem in {Bayesian} networks},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {233--240},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a7/}
}
TY  - JOUR
AU  - Polańska, J.
AU  - Borys, D.
AU  - Polański, A.
TI  - Node assignment problem in Bayesian networks
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2006
SP  - 233
EP  - 240
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a7/
LA  - en
ID  - IJAMCS_2006_16_2_a7
ER  - 
%0 Journal Article
%A Polańska, J.
%A Borys, D.
%A Polański, A.
%T Node assignment problem in Bayesian networks
%J International Journal of Applied Mathematics and Computer Science
%D 2006
%P 233-240
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a7/
%G en
%F IJAMCS_2006_16_2_a7
Polańska, J.; Borys, D.; Polański, A. Node assignment problem in Bayesian networks. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 2, pp. 233-240. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a7/

[1] Charniak E. (1991): Bayesian networks without tears. - AI Magazine, Vol. 12, No. 4, pp. 50-63.

[2] Chickering D.M. (2002): Learning equivalence classes of Bayesian-network structures. - J. Mach. Learn. Res., Vol. 2, No. 3, pp. 445-498.

[3] David H.A. and Nagaraja H.N. (2003): Order Statistics. - Hoboken, New Jersey: Wiley.

[4] Friedman N. (1998): The Bayesian structural EM algorithm. - Proc. 14-th Conf. Uncertainty in Artificial Intelligence, Madisin, Wisconsin, USA, pp. 129-138.

[5] Friedman N. (2004): Inferring cellular networks using probabilistic graphical models. - Science, Vol. 303, No. 5659, pp. 799-805.

[6] Friedman N., Linial M., Nachman I. and Pe'er D. (2000): Using Bayesian networks to analyze expression data. - J. Comput. Biol., Vol. 7, Nos. 3-4, pp. 601-620.

[7] Gadbury G.L. and Schreuder H.T. (2003): Cause-effect relationships in analytical surveys: An illustration of statistical issues. - Env. Monit. Assess., Vol. 83, No. 3, pp. 205-227.

[8] Gilks W.R., Richardson S. and Spiegelhalter D.J. (1996): Markov Chain Monte Carlo in Practice.-London: Chapman and Hall.

[9] Heckerman D. (1995): A tutorial on learning with Bayesian networks. - Tech. Rep., MSR-TR-95-06, available at: ftp://ftp.research.microsoft.com/pub/tr/ tr-95-06.pdf

[10] Ideker T., Thorsson V., Ranish J.A., Christmas R., Buhler J., Eng J.K., Bumgarner R., Goodlett D.R., Aebersold D.R. and Hood L. (2001): Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science, Vol. 292, No. 5518, pp. 929-934.

[11] Ideker T., Ozier O., Schwikowski B. and Siegel A.F. (2002): Discovering regulatory and signaling circuits in molecularinteraction networks. - Bioinf. Vol. 18, Suppl. 1, No. 90001, pp. S233-S240.

[12] Jansen R., Yu H., Greenbaum H., Kluger Y., Krogan N.J., Chung S., Emili S., Snyder M., Greenblatt J.F. and Gerstein M. (2003): A Bayesian networks approach for predicting protein - Protein interactions from genomic data. - Science, Vol. 302, No. 5644, pp. 449-453.

[13] Jensen F.V. (2001): Bayesian Networks and Decision Graphs. - New York: Springer.

[14] Murphy K. (2005): Bayes net toolbox for matlab. - Available at: http://bnt.sourceforge.net/

[15] Liu J. and Desmarais M.C. (1997): A method of learning implication networks from empirical data: Algorithm and Monte-Carlo simulation-based validation. - IEEE Trans. Knowl. Data Eng., Vol. 9, No. 6, pp. 990-1004.

[16] Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H. and Teller E. (1953): Equations of state calculations by fast computing machines. - J. Chem. Phys., Vol. 21, No. 6, pp. 1087-1092.

[17] Neapolitan R.E. (2003): Learning Bayesian Networks.-Upper Saddle River, NJ: Prentice Hall.

[18] Pearl J. (2000): Causality: Models, Reasoning, and Inference. -Cambridge, MA: Cambridge University Press.

[19] Pearl J. and Verma T.S. (1991): A theory of inferred causation, In: Principles of Knowledge Representation and Reasoning, (J.A. Allen, R. Fikes and E. Sandewall, Eds.). - San Mateo: Morgan Kaufmann.

[20] Pe'er D., Regev A., Elidan G. and Friedman N. (2001): Inferring subnetworks from perturbed expression profiles. - Bioinf., Vol. 17, Suppl. 1, No. 90001, pp. S215-S224.

[21] Polanski A., Polanska J., Jarzab M., Wiench M. And Jarzab B., (2005): Inferring cause - effect relations from gene expression profiles of cancer versus normal cells. - Tech. Rep., available at: http:// web.zis.ia.polsl.gliwice.pl/publikacje/ projekty/technical_report.pdf

[22] Rhodes D.R., Yu J., Shanker K., Deshpande N., Varambally R., Ghosh R., Barrette T., Pandey A. and Chinnaiyan A.M. (2004): ONCOMINE, A cancer microarray database and integrated data mining platform. - Neoplasia, Vol. 6, No. 1, pp. 1-6.

[23] Segal E., Taskar B., Gasch A., Friedman N. and Koller D. (2001): Rich probabilistic models for gene expression. - Bioinf., Vol. 1, No. 1, pp. 1-10.