Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2006_16_2_a11, author = {Porwik, P. and Stankovi\'c, R. S.}, title = {Dedicated spectral method of {Boolean} function decomposition}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {271--278}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a11/} }
TY - JOUR AU - Porwik, P. AU - Stanković, R. S. TI - Dedicated spectral method of Boolean function decomposition JO - International Journal of Applied Mathematics and Computer Science PY - 2006 SP - 271 EP - 278 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a11/ LA - en ID - IJAMCS_2006_16_2_a11 ER -
%0 Journal Article %A Porwik, P. %A Stanković, R. S. %T Dedicated spectral method of Boolean function decomposition %J International Journal of Applied Mathematics and Computer Science %D 2006 %P 271-278 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a11/ %G en %F IJAMCS_2006_16_2_a11
Porwik, P.; Stanković, R. S. Dedicated spectral method of Boolean function decomposition. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 2, pp. 271-278. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a11/
[1] Ahmed N. and Rao K.R. (1975): Orthogonal Transforms for Digital Signal Processing. - Berlin: Springer.
[2] Ashenhurst R. (1957): The decomposition of switching functions. - Proc. Int. Symp. Theory of Switching, Annual Computation Laboratory, Harvard University, Vol. 29, pp. 74-116.
[3] Dubrova E. (1999): AOXMIN-MV: A heuristic algorithm for AND-OR-XOR minimization. - Proc. Int. Workshop Applications of Reed-Muller Expansion in Circuit Design, RM'99, Victoria, Canada, pp. 37-53.
[4] Curtis H.A. (1962): A New Approach to the Design of Switching Circuits. -Princeton: Van Nostrand.
[5] Bertacco V. and Damiani M. (1997): The disjunctive decomposition of logic functions.-Proc. Computer-Aided Design, ICCAD'97, San Jose, CA, pp. 78-82.
[6] Falkowski B.J. and Kannurao S. (2001): Analysis of disjunctive decomposition of balanced Boolean functions through Walsh spectrum. - IEE Proc. Comput. Digit. Techn., Vol. 148, No. 2, pp. 71-78.
[7] Falkowski B.J. and Porwik P. (1999): Evaluation of nonlinearity in Boolean functions by extended Walsh-Hadamard transform.- Proc. 2nd Int. Conf. Information Communications and Signal Processing, ICISC'99, Singapore, paper 2B2.2, pp. 1-4.
[8] Hurst S.L., Miller D.M. and Muzio J.C. (1985): Spectral Techniques in Digital Logic. -London: Academic Press.
[9] Karpovsky M.G. (1976): Finite Orthogonal Series in the Design of Design of Digital Devices. - New York: Wiley.
[10] Karpovsky M.G., Stankovi´c R.S. and Astola J.T. (2003): Reduction of size decision diagrams by autocorrelation functions. -IEEE Trans. Comput., Vol. 52, No. 5, pp. 592-606.
[11] Lai Y., Pedram M. and Vrudhula S. (1993): BDD based decomposition of logic function with application to FPGA synthesis. - Proc. 30-th Conf. Design Automation, DAC'93, Dallas, Texas, pp. 642-647.
[12] MacWilliams F.J. and Sloane N.J. (1977): The Theory of Error- Correctiong Codes. - Amsterdam: Nord-Holland Publishing Company.
[13] Mishchenko A., Steinbach B. and Perkowski M. (2001): An algorithm for bi-decomposition of logic functions. - Proc. 38-th Conf. Design Automation, DAC'01, Las Vegas, NV, pp. 103-108.
[14] Nowicka M., Rawski M. and Łuba T. (1999): DEMAIN - An interactive tool for FPGA-based logic decomposition. - Proc. 6-th Int. Conf. Mixed Design of Integrated Circuits and Systems, Cracow, Poland, pp. 115-120.
[15] Porwik P. (2003): The spectral test of the Boolean function linearity. - Int. J. Appl. Math. Comput. Sci., Vol. 13, No. 4, pp. 567-575.
[16] Porwik P. (2004a): Efficient spectral method of identification of linear Boolean function. - Int. J. Contr. Cybern., Vol. 33, No. 4, pp. 663-678.
[17] Porwik P. (2004b): Walsh coefficients distribution for some types of Boolean function. - Arch. Theoret. Appl. Informat., Vol. 16, No. 2, pp. 109-120.
[18] Rawski M., Jóźwiak L. and Łuba T. (2001): Functional decomposition with an efficient input support selection for subfunctions based on information relationship measures. - J. Syst. Archit., Vol. 47, Elsevier Science, pp. 137-155.
[19] Rice J. and Muzio J.C. (2003): On the use of autocorrelation coefficients in the identification of three-level decompositions. - Proc. Int. Workshop Logic Synthesis, IWLS'03, Laguna Beach, CA, pp. 187-191.
[20] Stanković R.S. and Astola J.T., (2003): Spectral Interpretation of Decision Diagram. -New York: Springer.
[21] Stanković R.S. and Falkowski B. (2002): Spectral transforms calculation trough decision diagrams. - VLSI Design., Vol. 14, No. 1, pp. 5-12.
[22] Sasao T. and Butler J.T. (1997): On bi-decomposition of logic functions. - Proc. Int. Workshop Logic Synthesis, Lake Tahoe, CA, Vol. 2, pp. 1-6.
[23] Sasao T. and Matsuura M. (2004): A method to decompose multiple-output logic functions. - Proc. 41-th Conf. Design Automation, DAC'04, San Diego, CA, pp. 428-433.
[24] Tokmen V.H. (1980): Disjoint decomposability of multi-valued functions by spectral means. - Proc. IEEE 10-th Int. Symp. Multiple-Valued Logic, New York, USA, pp. 88-93.
[25] Tomczuk R. (1996): Autocorrelation and decomposition methods in combinational logic design. - Ph.D. thesis, University of Victoria, Victoria, Cadada.
[26] Yanushkevich S. (1998): Logic Differential Calculus in Multi- Valued Logic Design. - Szczecin: Techn. University of Szczecin Academic Publishers, Poland.
[27] Yaroslavsky L. (2003): Digital Image Processing. - Boston, MA: Kluwer Academic Publisher.