Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2006_16_1_a9, author = {Kaczorek, T.}, title = {An extension of the {Cayley-Hamilton} theorem for nonlinear time-varying systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {141--145}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a9/} }
TY - JOUR AU - Kaczorek, T. TI - An extension of the Cayley-Hamilton theorem for nonlinear time-varying systems JO - International Journal of Applied Mathematics and Computer Science PY - 2006 SP - 141 EP - 145 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a9/ LA - en ID - IJAMCS_2006_16_1_a9 ER -
%0 Journal Article %A Kaczorek, T. %T An extension of the Cayley-Hamilton theorem for nonlinear time-varying systems %J International Journal of Applied Mathematics and Computer Science %D 2006 %P 141-145 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a9/ %G en %F IJAMCS_2006_16_1_a9
Kaczorek, T. An extension of the Cayley-Hamilton theorem for nonlinear time-varying systems. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 1, pp. 141-145. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a9/
[1] Busłowicz M. (1981): An algorithm of determination of the quasi-polynomial of multivariable time-invariant linear system with delays based on state equations. - Archive of Automatics and Telemechanics, Vol. XXXVI, No. 1, pp. 125-131, (in Polish).
[2] Busłowicz M. (1982): Inversion of characteristic matrix of the time-delay systems of neural type. - Found. Contr. Eng., Vol. 7, No. 4, pp. 195-210.
[3] Busłowicz M. and Kaczorek T. (2004): Rechability and minimum energy control of positive linear discrete-time systems with one delay.-Proc. 12th Mediterranean Conf. Control and Automation, Kasadasi-Izmur, Turkey (on CD-ROM).
[4] Chang F.R. and Chan C.N. (1992): The generalized Cayley- Hamilton theorem for standard pencils. - Syst. Contr. Lett., Vol. 18, No. 3, pp. 179-182.
[5] Gantmacher F.R. (1974): The Theory of Matrices. - Vol. 2, Chelsea.
[6] Kaczorek T. (1988): Vectors and Matrices in Automation and Electrotechnics. - Warsaw: Polish Scientific Publishers, (in Polish).
[7] Kaczorek T. (1992-1993): Linear Control Systems, Vols. I and II.-Taunton: Research Studies Press.
[8] Kaczorek T. (1994): Extensions of the Cayley-Hamilton theorem for 2D continuous-discrete linear systems. - Appl. Math. Comput. Sci., Vol. 4, No. 4, pp. 507-515.
[9] Kaczorek T. (1995a): An existence of the Cayley-Hamilton theorem for singular 2D linear systems with non-square matrices.- Bull. Pol. Acad. Techn. Sci., Vol. 43, No. 1, pp. 39-48.
[10] Kaczorek T. (1995b): An existence of the Cayley-Hamilton theorem for nonsquare block matrices. - Bull. Pol. Acad. Techn. Sci., Vol. 43, No. 1, pp. 49-56.
[11] Kaczorek T. (1995c): Generalization of the Cayley-Hamilton theorem for nonsquare matrices. - Proc. Int. Conf. Fundamentals of Electrotechnics and Circuit Theory XVIII-SPETO, Gliwice, Poland, pp. 77-83.
[12] Kaczorek T. (1998): An extension of the Cayley-Hamilton theorem for a standard pair of block matrices. - Appl. Math. Com. Sci., Vol. 8, No. 3, pp. 511-516.
[13] Kaczorek T. (2005a): Generalization of Cayley-Hamilton theorem for n-D polynomial matrices.-IEEE Trans. Automat Contr., Vol. 50, No. 5, pp. 671-674.
[14] Kaczorek T. (2005b): Extension of the Cayley-Hamilton theorem for continuous-time systems with delays. - Appl. Math. Comp. Sci., Vol. 15, No. 2, pp. 231-234.
[15] Lancaster P. (1969): Theory of Matrices. - New York: Acad. Press.
[16] Lewis F.L. (1982): Cayley-Hamilton theorem and Fadeev's method for the matrix pencil [sE−A].-Proc. 22nd IEEE Conf. Decision and Control, San Diego, USA, pp. 1282-1288.
[17] Lewis F.L. (1986): Further remarks on the Cayley-Hamilton theorem and Fadeev's method for the matrix pencil [sE −A]. - IEEE Trans. Automat. Contr., Vol. 31, No. 7, pp. 869-870.
[18] Mcrtizios B.G. and Christodolous M.A. (1986): On the generalized Cayley-Hamilton theorem. - IEEE Trans. Automat. Contr., Vol. 31, No. 1, pp. 156-157.
[19] Smart N.M. and Barnett S. (1989): The algebra of matrices in n-dimensional systems.-IMA J. Math. Contr. Inf., Vol. 6, pp. 121-133.
[20] Theodoru N.J. (1989): M-dimensional Cayley-Hamilton theorem.- IEEE Trans. Automat. Control, Vol. AC-34, No. 5, pp. 563-565.
[21] Victoria J. (1982): A block Cayley-Hamilton theorem. - Bull. Math. Soc. Sci. Math. Roum, Vol. 26, No. 1, pp. 93-97.