Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2006_16_1_a8, author = {Sierociuk, D. and Dzieli\'nski, A.}, title = {Fractional {Kalman} filter algorithm for the states, parameters and order of fractional system estimation}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {129--140}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a8/} }
TY - JOUR AU - Sierociuk, D. AU - Dzieliński, A. TI - Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation JO - International Journal of Applied Mathematics and Computer Science PY - 2006 SP - 129 EP - 140 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a8/ LA - en ID - IJAMCS_2006_16_1_a8 ER -
%0 Journal Article %A Sierociuk, D. %A Dzieliński, A. %T Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation %J International Journal of Applied Mathematics and Computer Science %D 2006 %P 129-140 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a8/ %G en %F IJAMCS_2006_16_1_a8
Sierociuk, D.; Dzieliński, A. Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 1, pp. 129-140. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a8/
[1] Bologna M. and Grigolini P. (2003): Physics of Fractal Operators.-New York: Springer-Verlag.
[2] Brown R.G. and Hwang P.Y.C. (1997): Introduction to RandomSignals and Applied Kalman Filtering with Matlab Exercises and Solutions. - New York: Wiley.
[3] Cois O., Oustaloup A., Battaglia E. and Battaglia J.-L. (2000): Non-integer model from modal decomposition for time domain system identification. - Proc. Symp. System Identification, SYSID 2000, Santa Barbara, CA, Vol. 3, p. 989-994.
[4] Cois O., Oustaloup A., Poinot T. and Battaglia J.-L. (2001): Fractional state variable filter for system identification by fractional model. - Proc. European Contr. Conf., ECC'2001, Porto, Portugal, pp. 2481-2486.
[5] Engheta N. (1997): On the role of fractional calculus in electromagnetic theory. - IEEE Trans. Antenn. Prop., Vol. 39, No. 4, pp. 35-46.
[6] Ferreira N.M.F. and Machado J.A.T. (2003): Fractional-order hybrid control of robotic manipulators. - Proc. 11-th Int. Conf. Advanced Robotics, ICAR'2003, Coimbra, Portugal, pp. 393-398.
[7] Gałkowski K. (2005): Fractional polynomials and nD systems. - Proc. IEEE Int. Symp. Circuits and Systems, ISCAS' 2005, Kobe, Japan, CD-ROM.
[8] Haykin S. (2001): Kalman Filtering and Neural Networks. - New York: Wiley.
[9] Hilfer R., Ed. (2000): Application of Fractional Calculus in Physics. -Singapore: World Scientific.
[10] Jun S.C. (2001): A note on fractional differences based on a linear combination between forward and backward differences. -Comput. Math. Applic., Vol. 41, No. 3, pp. 373-378.
[11] Kalman R.E. (1960): A new approach to linear filtering and prediction problems. - Trans. ASME J. Basic Eng., Vol. 82, Series D, pp. 35-45.
[12] Miller K.S. and Ross B. (1993): An Introduction to the Fractional Calculus and Fractional Differenctial Equations. - New York: Wiley.
[13] Moshrefi-Torbati M. and Hammond K. (1998): Physical and geometrical interpretation of fractional operators. - J. Franklin Inst., Vol. 335B, No. 6, pp. 1077-1086.
[14] Nishimoto K. (1984): Fractional Calculus. - Koriyama: Decartes Press.
[15] Oldham K.B. and Spanier J. (1974): The Fractional Calculus. -New York: Academic Press.
[16] Ostalczyk P. (2000): The non-integer difference of the discretetime function and its application to the control system synthesis.- Int. J. Syst. Sci., Vol. 31, No. 12, pp. 1551-1561.
[17] Ostalczyk P. (2004a): Fractional-Order Backward Difference Equivalent Forms Part I - Horner's Form. - Proc. 1-st IFAC Workshop Fractional Differentation and its Applications, FDA'04, Enseirb, Bordeaux, France, pp. 342-347.
[18] Ostalczyk P. (2004b): Fractional-Order Backward Difference Equivalent Forms Part II - Polynomial Form.-Proc. 1-st IFAC Workshop Fractional Differentation and its Applications, FDA'04, Enseirb, Bordeaux, France, pp. 348-353.
[19] Oustaloup A. (1993): Commande CRONE.-Paris: Hermés.
[20] Oustaloup A. (1995): La dérivation non entiére. - Paris: Hermés.
[21] Podlubny I. (1999): Fractional Differential Equations. - San Diego: Academic Press.
[22] Podlubny I. (2002): Geometric and physical interpretation of fractional integration and fractional differentiation. - Fract. Calc. Appl. Anal., Vol. 5, No. 4, pp. 367-386.
[23] Podlubny I., Dorcak L. and Kostial I. (1997): On fractiona derivatives, fractional-order systems and PIλDμ- controllers. - Proc. 36-th IEEE Conf. Decision and Control, San Diego, CA, pp. 4985-4990.
[24] Poinot T. and Trigeassou J.C. (2003): Modelling and simulation of fractional systems using a non integer integrator. - Proc. Design Engineering Technical Conferences, DETC'03, and Computers and Information in Engineering Conference, ASME 2003, Chicago, IL, pp. VIB-48390.
[25] Reyes-Melo M.E., Martinez-Vega J.J., Guerrero-Salazar C.A. and Ortiz-Mendez U. (2004a): Application of fractional calculus to modelling of relaxation phenomena of organic dielectric materials. - Proc. Int. Conf. Solid Dielectrics, Toulouse, France, Vol. 2, pp. 530-533.
[26] Reyes-Melo M.E., Martinez-Vega J.J., Guerrero-Salazar C.A. and Ortiz-Mendez U. (2004b): Modelling of relaxation phenomena in organic dielectric materials. application of differential and integral operators of fractional order. - J. Optoel. Adv. Mat., Vol. 6, No. 3, pp. 1037-1043.
[27] Riewe F. (1997): Mechanics with fractional derivatives. - Phys. Rev. E, Vol. 55, No. 3, pp. 3581-3592.
[28] Riu D., Retiére N. and Ivanés M. (2001): Turbine generator modeling by non-integer order systems.- Proc. IEEE Int. Electric Machines and Drives Conference, IEMDC 2001, Cambridge , MA, pp. 185-187.
[29] Samko S.G., Kilbas A.A. and Maritchev O.I. (1993): Fractional Integrals and Derivative. Theory and Applications. - London: Gordon Breach.
[30] Schutter J., Geeter J., Lefebvre T. and Bruynickx H. (1999): Kalman filters: A tutorial. - Available at http://citeseer.ist.psu.edu/443226.html
[31] Sierociuk D. (2005a): Fractional order discrete state-space system Simulink toolkit user guide. - Available at http://www.ee.pw.edu.pl/˜dsieroci/fsst/fsst.htm
[32] Sierociuk D. (2005b): Application of a fractional Kalman filter to parameter estimation of a fractional-order system. - Proc. 15-th Nat. Conf. Automatic Control, Warsaw, Poland, Vol. 1, pp. 89-94, (in Polish).
[33] Sjöberg M. and Kari L. (2002): Non-linear behavior of a rubber isolator system using fractional derivatives.-Vehicle Syst. Dynam., Vol. 37, No. 3, pp. 217-236.
[34] Suarez J.I., Vinagre B.M. and Chen Y.Q. (2003): Spatial path tracking of an autonomous industrial vehicle using fractional order controllers. - Proc. 11-th Int. Conf. Advanced Robotics, ICAR 2003, Coimbra, Portugal, pp. 405-410.
[35] Sum J.P.F., Leung C.S. and Chan L.W. (1996): Extended Kalman filter in recurrent neural network training and pruning. - Tech. Rep., Department of Computer Science and Engineering, Chinese University of Hong Kong, CS-TR-96-05.
[36] Vinagre B.M., Monje C.A. and Calderón A.J. (2002): Fractional order systems and fractional order control actions.-Lecture 3 IEEE CDC02 TW#2: Fractional calculus Applications in Automatic Control and Robotics'.
[37] Vinagre B.M. and Feliu V. (2002): Modeling and control of dynamic system using fractional calculus: Application to electrochemical processes and flexible structures. - Proc. 41-st IEEE Conf. Decision and Control, Las Vegas, NV, pp. 214-239.
[38] Zaborovsky V. and Meylanov R. (2001): Informational network traffic model based on fractional calculus. - Proc. Int. Conf. Info-tech and Info-net, ICII 2001, Beijing, China, Vol. 1, pp. 58-63.