Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2006_16_1_a6, author = {Kasi\'nski, A. and Ponulak, F.}, title = {Comparison of supervised learning methods for spike time coding in spiking neural networks}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {101--113}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a6/} }
TY - JOUR AU - Kasiński, A. AU - Ponulak, F. TI - Comparison of supervised learning methods for spike time coding in spiking neural networks JO - International Journal of Applied Mathematics and Computer Science PY - 2006 SP - 101 EP - 113 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a6/ LA - en ID - IJAMCS_2006_16_1_a6 ER -
%0 Journal Article %A Kasiński, A. %A Ponulak, F. %T Comparison of supervised learning methods for spike time coding in spiking neural networks %J International Journal of Applied Mathematics and Computer Science %D 2006 %P 101-113 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a6/ %G en %F IJAMCS_2006_16_1_a6
Kasiński, A.; Ponulak, F. Comparison of supervised learning methods for spike time coding in spiking neural networks. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 1, pp. 101-113. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a6/
[1] Barber D. (2003): Learning in spiking neural assemblies, In:Advances in Neural Information Processing Systems 15, (S.T.S. Becker and K. Obermayer, Eds.). - MIT Press, Cambridge, MA, pp. 149-156.
[2] Belatreche A., Maguire L.P., McGinnity M. and Wu Q.X. (2003): A Method for Supervised Training of Spiking Neural Networks. - Proc. IEEE Conf. Cybernetics Intelligence - Challenges and Advances, CICA'2003, Reading, UK, pp. 39-44.
[3] Bi G.Q. (2002): Spatiotemporal specificity of synaptic plasticity: Cellular rules and mechanisms. - Biol. Cybern., Vol. 87, No. 5-6, pp. 319-332.
[4] Bienenstock E. (1995): A Model of Neocortex. - Network: Computation in Neural Systems, Vol. 6, No. 2, pp. 179-224.
[5] Bohte S. (2003): Spiking Neural Networks. - Ph.D. thesis, University of Amsterdam, Faculty of Mathematics and Natural Sciences, available at: http://homepages.cwi.nl/~bohte.
[6] Bohte S., Kok J. and La Poutré H. (2000): Spike-prop: Errorbackprogation in multi-layer networks of spiking neurons. - Proc. Euro. Symp. Artificial Neural Networks ESANN'2000, Bruges, Belgium, pp. 419-425.
[7] Bohte S., Kok J. and Poutr'e H.L. (2002): Errorbackpropagation in temporally encoded networks of spiking neurons. - Neurocomp., Vol. 48, No. 1-4, pp. 17-37.
[8] Bohte S.M. (2004): The Evidence for Neural Information Processing with Precise Spike-times: A Survey. -Natural Comput., Vol. 3, No. 4, pp. 195-206.
[9] Bonhoeffer T., Staiger V. and Aertsen A. (1989): Synaptic plasticity in rat hippocampal slice cultures: Local Hebbian conjunction of pre- and postsynaptic stimulation leads to distributed synaptic enhancement.-Proc. Nat. Acad. Sci. USA, Vol. 86, No. 20, pp. 8113-8117.
[10] Carnell A. and Richardson D. (2004): Linear algebra for time series of spikes. - Available at: http://www.bath.ac.uk/~Emasdr/spike.ps
[11] Cohen H. (1993): A Course in Computational Algebraic Number Theory. - New York: Springer.
[12] Gabbiani F. and Midtgaard J. (2001): Neural information processing, In: Encyclopedia of Life Sciences, Nature Publishing Group, www.els.net, Vol. 0, pp. 1-12.
[13] Gerstner W. and Kistler W. (2002a): Spiking Neuron Models. Single Neurons, Populations, Plasticity. - Cambridge: Cambridge University Press.
[14] Gerstner W. and KistlerW. (2002b): Mathematical formulations of Hebbian learning. - Biol. Cybern., Vol. 87, No. 5-6, pp. 404-415.
[15] GerstnerW., Kempter R., van Hemmen J. andWagner H. (1996): A neuronal learning rule for sub-millisecond temporal coding. -Nature, Vol. 383, No. 6595, pp. 76-78.
[16] Guetig R., Aharonov R., Rotter S. and Sompolinsky H. (2003): Learning input correlations through non-linear temporally asymmetric Hebbian plasticity. - J. Neurosci., Vol. 23, No. 9, pp. 3697-3714.
[17] Hebb D. (1949): The Organization of Behavior. - Cambridge: Wiley.
[18] Hertz J., Krogh A. and Palmer R. (1991): Introduction to the Theory of Neural Networks. - Redwood-City, CA: Addison-Wesley.
[19] Kasiński A. and Ponulak F. (2005): Experimental demonstration of learning properties of a new supervised learning method for the spiking neural networks, In: Proc. 15-th Int. Conf. Artificial Neural Networks: Biological Inspirations, Vol. 3696, Lecture Notes in Computer Science. - Berlin: Springer, pp. 145-153.
[20] Kepecs A., Van Rossum M., Song S. and Tegner J. (2002): Spike-timing-dependent plasticity: common themes and divergent vistas.-Biol. Cybern., Vol. 87, No. 5-6, pp. 446-458.
[21] KistlerW. (2002): Spike-timing dependent synaptic plasticity: A phenomenological framework. - Biol. Cybern., Vol. 87, No. 5-6, pp. 416-427.
[22] Koerding K. and Koenig P. (2000): Learning with two sites of synaptic integration. - Network: Comput. Neural Syst., Vol. 11, pp. 1-15
[23] Koerding K. and Koenig P. (2001): Supervised and unsupervise learning with two sites of synaptic integration.-J. Comp. Neurosci., Vol. 11, No. 3, pp. 207-215.
[24] Legenstein R., Naeger C. and Maass W. (2005): What can a neuron learn with spike-timing-dependent plasticity? - (submitted).
[25] MaassW. (1997): Networks of spiking neurons: The third generation of neural network models. - Neural Netw., Vol. 10, No. 9, pp. 1659-1671.
[26] Maass W. (1998): On the role of time and space in neural computation, In: Proc. Federated Conf. CLS'98 and MFCS'98, Mathematical Foundations of Computer Science 1998, Vol. 1450, Lecture Notes in Computer Science. - Berlin: Springer, pp. 72-83.
[27] Maass W. (1999): Paradigms for computing with spiking neurons, In: Models of Neural Networks, (L. van Hemmen, Ed.).-Berlin: Springer.
[28] Maass W. (2002): Paradigms for computing with spiking neurons, In: Models of Neural Networks. Early Vision and Attention, (J.L. van Hemmen, J.D. Cowan and E. Domany, Eds.).-New York: Springer, pp. 373-402.
[29] Maass W. (2003): Computation with spiking neurons, In: The Handbook of Brain Theory and Neural Networks, 2nd Ed., (M. Arbib, Ed.). - MIT Press, Cambridge, pp. 1080- 1083.
[30] MaassW. and Bishop C. (Eds.) (1999): Pulsed Neural Networks. -Cambridge: MIT Press.
[31] Maass W. and Zador A. (1999): Computing and learning with dynamic synapses. - NeuroCOLT2 Technical Report Series NC2-TR-1999-041.
[32] Maass W., Natschlaeger T. and Markram H. (2002): Realtime computing without stable states: A new framework for neural computation based on perturbations. - Neural Comput., Vol. 14, No. 11, pp. 2531-2560.
[33] Markram H., Wang Y. and Tsodyks M. (1998): Differential signaling via the same axon of neocortical pyramidal neurons. -Proc. Nat. Acad. Sci., Vol. 95, No. 9, pp. 5323-5328.
[34] Markram H., Luebke J. and Frotscher B.S.M. (1997): Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs.-Science, Vol. 275, No. 5297, pp. 213-215.
[35] Mehta M.R., Lee A.K. and Wilson M.A. (2002): Role of experience of oscillations in transforming a rate code into a temporal code. - Nature, Vol. 417, No. 6891, pp. 741- 746.
[36] Moore S.C. (2002): Back-Propagation in Spiking Neural Networks. - M.Sc. thesis, University of Bath, available at: http://www.simonchristianmoore.co.uk.
[37] Natschlaeger T., Maass W. and Markram H. (2002): The "liquid computer", a novel strategy for real-time computing on time series.-Special issue on Foundations of Information Processing of TELEMATIK, Vol. 8, No. 1, pp. 32-36.
[38] Pavlidis N.G., Tasoulis D.K., Plagianakos V.P., Nikiforidis G. and Vrahatis M.N. (2005): Spiking neural network training using evolutionary algorithms.-Proc. Int. Joint Conf. Neural Networks, IJCNN'05, Montreal, Canada.
[39] Pfister J.P., Barber D. and Gerstner W. (2003): Optimal Hebbian Learning: A Probabilistic Point of View, In: ICANN/ICONIP 2003, Vol. 2714, Lecture Notes in Computer Science.- Berlin: Springer, pp. 92-98.
[40] Pfister J.-P., Toyoizumi T., Barber D. and Gerstner W. (2005): Optimal spike-timing dependent plasticity for precise action potential firing. - (submitted), available at: http://diwww.epfl.ch/~jpfister/papers/Pfister_05a.pdf.
[41] Ponulak F. (2005): ReSuMe-new supervised learning method for spiking neural networks. - Tech.Rep., Institute of Control and Information Engineering, Poznan University of Technology, available at: http://d1.cie.put.poznan.pl/~fp/.
[42] Ponulak F. and Kasiński A. (2005): A novel approach towards movement control with spiking neural networks. - Proc. 3-rd Int. Symp. Adaptive Motion in Animals and Machines, Ilmenau, (Abstract).
[43] Popović D. and Sinkjaer T. (2000): Control of Movement for the Physically Disabled. - London: Springer.
[44] Ruf B. (1998): Computing and Learning with Spiking Neurons - Theory and Simulations. -Ph.D. thesis, Institute for Theoretical Computer Science, Technische Universitaet Graz, Austria.
[45] Ruf B. and Schmitt M. (1997): Learning temporally encoded patterns in networks of spiking neurons. -Neural Proces. Lett., Vol. 5, No. 1, pp. 9-18.
[46] Rumelhart D., Hinton G. and Williams R. (1986): Learning representations by back-propagating errors. - Nature, Vol. 323, pp. 533-536.
[47] Schrauwen B. and Van Campenhout J. (2004): Improving Spike- Prop: Enhancements to an Error-Backpropagation Rule for Spiking Neural Networks. - Proc. 15-th ProRISC Workshop, Veldhoven, the Netherlands.
[48] Seung S. (2003): Learning in spiking neural networks by reinforcement of stochastic synaptic transmission. - Neuron, Vol. 40, No. 6, pp. 1063-1073.
[49] Sougne J.P. (2001): A learning algorithm for synfire chains, In: Connectionist Models of Learning, Development and Evolution, (R.M. French and J.P. Sougne, Eds.). - London: Springer, pp. 23-32.
[50] SpearsW.M., Jong K.A.D., Baeck T., Fogel D.B. and de Garis H. (1993): An overview of evolutionary computation.-Proc. Europ. Conf. Machine Learning, Vienna, Austria, Vol. 667, pp. 442-459.
[51] Tao H.-Z.W., Zhang L.I., Bi G.-Q. and Poo M.-M. (2000): Selective presynaptic propagation of long-term potentiation in defined neural networks. -J. Neurosci., Vol. 20, No. 9, pp. 3233-3243.
[52] Thorpe S. J., Delorme A. and VanRullen R. (2001): Spike-based strategies for rapid processing. - Neural Netw., Vol. 14, No. 6-7, pp. 715-726.
[53] Tiňo P. and Mills A.J. (2005): Learning beyond finite memory in recurrent networks of spiking neurons, In: Advances in Natural Computation - ICNC 2005, (L. Wang, K. Chen and Y. Ong, Eds.), Lecture Notes in Computer Science.- Berlin: Springer, pp. 666-675.
[54] Van Rullen R., Guyonneau R. and Thorpe S.J. (2005): Spike times make sense. - TRENDS in Neurosci., Vol. 28, No. 1, pp. 1-4.
[55] Weisstein E.W. (2006): Gram-Schmidt Orthonormalization, from MathWorld-A Wolfram Web Resource. - Available at: http://mathworld.wolfram.com/Gram-SchmidtOrthonormalization.html.
[56] Xie X. and Seung S. (2004): Learning in neural networks by reinforcement of irregular spiking. - Phys. Rev., Vol. 69, No. 4, pp. 1-10.
[57] Xin J. and Embrechts M.J. (2001): Supervised Learning with Spiking Neuron Networks. - Proc. IEEE Int. Joint Conf. Neural Networks, IJCNN'01, Washington D.C., pp. 1772-1777.