Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2006_16_1_a5, author = {Witczak, M.}, title = {Advances in model-based fault diagnosis with evolutionary algorithms and neural networks}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {85--99}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a5/} }
TY - JOUR AU - Witczak, M. TI - Advances in model-based fault diagnosis with evolutionary algorithms and neural networks JO - International Journal of Applied Mathematics and Computer Science PY - 2006 SP - 85 EP - 99 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a5/ LA - en ID - IJAMCS_2006_16_1_a5 ER -
%0 Journal Article %A Witczak, M. %T Advances in model-based fault diagnosis with evolutionary algorithms and neural networks %J International Journal of Applied Mathematics and Computer Science %D 2006 %P 85-99 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a5/ %G en %F IJAMCS_2006_16_1_a5
Witczak, M. Advances in model-based fault diagnosis with evolutionary algorithms and neural networks. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 1, pp. 85-99. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a5/
[1] Allessandri A., Parisini T. and Zoppoli R (1997): Neural approximators for non-linear finite-memory state estimation. -Int. J. Contr., Vol. 67, No. 2, pp. 275-302.
[2] Atkinson A.C. and Donev A.N. (1992): Optimum Experimental Designs. - New York: Oxford University Press.
[3] Bäck T., Hammel U. and Schwefel H.P. (1997): Evolutionary computation: Comments on the history and current state. - IEEE Trans. Evolut. Computat., Vol. 1, No. 1, pp. 3-17
[4] Blanke M., Kinnaert M., Lunze J. and Staroswiecki M. (2003): Diagnosis and Fault-Tollerant Control..- Berlin: Springer
[5] Chandra P. and Sing Y. (2004): Feedforward sigmoidal networks - Equicontinuity and fault tolerance.-IEEE Trans. Neural Netw., Vol. 15, No. 6, pp. 1350-1366.
[6] Chen J. and Patton R. J. (1999): Robust Model-based Fault Diagnosis for Dynamic Systems. -London: Kluwer.
[7] Chen J., Patton R. J. and Liu G.P. (1996): Optimal residual design for fault diagnosis using multi-objective optimization and genetic algorithms.-Int. J. Syst. Sci., Vol. 27, No. 6, pp. 567-576.
[8] Chen Z., He Y., Chu F. and Huang J. (2003): Evolutionary strategy for classification problems and its application in fault diagnosis. - Eng. Appl. Artif. Intell., Vol. 16, No. 1, pp. 31-38.
[9] Cohn D.A. (1994): Neural network exploration using optimal experimental design, In: Advances in Neural Information Processing Systems 6 (J. Cowan et al., Eds.). - San Mateo: Morgan Kaufman.
[10] Chryssolouris G., Lee M. and Ramsey A. (1996): Confidence interval prediction for neural network models. - IEEE Trans. Neural Netw., Vol. 7, No. 1, pp. 229-232.
[11] DAMADICS (2004): Website of DAMADICS: Development and Application of Methods for Actuator Diagnosis in Industrial Control Systems. http://diag.mchtr.pw.edu.pl/damadics/.
[12] Delebecque F., Nikoukah R. and Rubio Scola H. (2003): Test signal design for failure detection: A linear programming approach. - Int. J. Appl. Math. Comput. Sci., Vol. 13, No. 4, pp. 515-526.
[13] Fedorov V.V., and Hackl P. (1997): Model-Oriented Design of Experiments. -New York: Springer.
[14] Fleming P.J. and Purshouse (2002): Evolutionary algorithms in control systems engineering: A survey. - Contr. Eng. Pract., Vol. 10, No. 11, pp. 1223-1241.
[15] Fogel D.B. (1995): Evolutionary Computation: Toward a New Philosophy of Machine Intelligence.-New York: Willey- IEEE Press.
[16] Fogel L.J., Owens A.J. and Walsh M.J. (1999): An overview of evolutionary programming, In: Evolutionary Algorithms (De Jong K., Vose M.D. and Whitley L.D., Eds.). - Heidelberg: Springer.
[17] Frank P.M. and Köppen-Seliger (1997): New developments using AI in fault diagnosis. - Eng. Appl. Artif. Intell., Vol. 10, No. 1, pp. 3-14.
[18] Frank P.M., Schreier G. and Garcia E.A. (1999): Non-linear observers for fault detection and isolation, In: New Directions in Non-linear Observer Design (Nijmeijer H., Fossen T.I., Eds.).-Berlin: Springer.
[19] Fuente M.J. and Saludes S. (2000): Fault detection and isolation in a non-linear plant via neural networks. - Proc. Symp. Fault Detection, Supervision and Safety for Technical Processes, SAFEPROCESS, Budapest, Hungary, pp. 472-477.
[20] Fukumizu K. (1996): Active learning in multilayer perceptrons, In: Advances in Neural Information Processing Systems (D.S. Touretzky et al., Eds.). - Cambridge: MIT Press, pp. 295-301.
[21] Fukumizu K. (2000): Statistical active learning in multilayer perceptrons. - IEEE Trans. Neural Netw., Vol. 11, No. 1, pp. 17-26.
[22] Galar R. (1989): Evolutionary search with soft selection. - Biol. Cybern., Vol. 60, No. 1, pp. 124-141.
[23] Goodwin G.C. and Payne R.L. (1977): Dynamic Systems Identification. Experiment Design and Data Analysis. - New York: Acadamic Presss.
[24] Gray G. J, Murray-Smith D. J., Li Y., Sharman K. C. and Weinbrenner T. (1998): Non-linear model structure identification using genetic programming. - Contr. Eng. Pract., Vol. 6, No. 11, pp. 1341-1352.
[25] Guo L.Z. and Zhu Q.M. (2002): A fast convergent extended Kalman observer for non-linear discrete-time systems. - Int. J. Syst. Sci., Vol. 33, No. 13, pp. 1051-1058.
[26] Gupta M.M., Jin L. and Homma N. (2003): Static and Dynamic Neural Networks. From Fundamentals to Advanced Theory. -Hoboken, NJ: Wiley.
[27] Holland J.H. (1975): Adaptation in Natural and Artificial Systems.- Ann Arbor, MI: The University of Michigan Press.
[28] Hunt K.J., Sbarbaro D., Zbikowski R. and Gawthrop P.J. (1992):Neural networks for control systems - A survey. - Automatica, Vol. 28, No. 6, pp. 1083-1112.
[29] Ivakhnenko A.G. and Mueller J.A. (1995): Self-organizing of nets of active neurons. - Syst. Anal. Modell. Simul., Vol. 20, pp. 93-106.
[30] Janczak A. (2005): Identification of Non-Linear Systems Using Neural Networks and Polynomial Models: A Block- Oriented Approach. -Berlin: Springer.
[31] Karpenko M., Sepehri N. and Scuse D. (2003): Diagnosis of process valve actuator faults using a multilayer neural network. - Contr. Eng. Practice, Vol. 11, No. 11, pp. 1289-1299.
[32] Korbicz J., Kościelny J.M., Kowalczuk Z. and Cholewa W. (Eds.) (2004): Fault Diagnosis. Models, Artificial Intelligence, Applications. -Berlin: Springer.
[33] Kowalczuk Z., Suchomski P. and Białaszewski T. (1999): Evolutionary muti-objective Pareto optimization of diagnostic state observers.-Int. J. Appl. Math. Comput. Sci., Vol. 9, No. 3, pp. 689-709.
[34] Koza J. R. (1992): Genetic Programming: On the Programming of Computers by Means of Natural Selection. - Cambridge: The MIT Press.
[35] Le T.T., Watton J. and Pham D.T. (1997): An artificial neural network based approach to fault diagnosis and classification of fluid power systems. - J. Syst. Contr. Eng., Vol. 211, No. 4, pp. 307-317.
[36] Le T.T., Watton J. and Pham D.T. (1998): Fault classification of fluid power systems using a dynamics feature extraction technique and neural networks.-J. Syst. Contr. Eng., Vol. 212, No. 2, pp. 87-97.
[37] MacKay D. (1992): Information-based objective functions for active data selection. - Neural Comput., Vol. 4, No. 4, pp. 305-318.
[38] Marcu T. (1997): A multiobjective evolutionary approach to pattern recognition for robust diagnosis of process faults. - Proc. Symp. Fault Detection, Supervision and Safety for Technical Processes, SAFEPROCESS, Hull, UK, pp. 1183-1188.
[39] Metenidis M.F., Witczak M. and Korbicz J. (2004): A novel genetic programming approach to non-linear system modelling: Application to the DAMADICS benchmark problem. - Eng. Appl. Artif. Intell., Vol. 17, No. 4, pp. 363-370.
[40] Michalewicz Z. (1996): Genetic Algorithms + Data Structures = Evolution Programs. -Berlin: Springer.
[41] Milanese M., Norton J., Piet-Lahanier H. and Walter E. (Eds.) (1996): Bounding Approaches to System Identification. - New York: Plenum Press.
[42] Miller J.A., Potter W.D., Gandham R.V. and Lapena C.N. (1993): An evaluation of local improvement operators for genetic algorithms.-IEEE Trans. Syst. Man and Cybern., Vol. 23, No. 5, pp. 1340-1351.
[43] Mrugalski M. and Witczak M. (2002): Parameter estimation of dynamic GMDH neural networks with the bounded-error technique.-J. Appl. Comput. Sci., Vol. 10, No. 1, pp. 77-90.
[44] Narendra K.S. and Parthasarathy K. (1990): Identification and control of dynamical systems using neural networks. - IEEE Trans. Neural Netw., Vol. 1, No. 1, pp. 1-27.
[45] Patan K. and Parisini T. (2005): Identification of neural dynamic models for fault detection and isolation: the case of a real sugar evaporation process.-J. Proc. Contr., Vol. 15, No. 1, pp. 67-79.
[46] Porter L.L. and Passino K.M. (1995): Genetic adaptive observers.- Eng. Appl. Artif. Intell., Vol. 8, No. 3, pp. 261-269.
[47] Ruano A.E. (Ed.) (2005): Intelligent Control Systems Using Computational Intelligence Techniques. - London: The IEE Press.
[48] Sjoberg J., Zhang Q., Ljung L., Benveniste A., Delyon B., Glorennec P. Y., Hjalmarsson H. and Juditsky A. (1995): Nonlinear black-box modeling in system identification: A unified overview. - Automatica, Vol. 31, No. 12, pp. 1691- 1724.
[49] Sun R., Tsung F. and Qu L. (2004): Combining bootstrap and genetic programming for feature discovery in diesel engine diagnosis.-Int. J. Ind. Eng., Vol. 11, No. 3, pp. 273-281.
[50] Uciński D. (2005): Optimal Measurements Methods for Distributed Parameter System Identification. - Boca Raton, FL: CRC Press.
[51] Walter E. and Pronzato L. (1997): Identification of Parametric Models from Experimental Data. -Berlin: Springer
[52] Watton J. and Pham D.T. (1997): An artificial NN based approach to fault diagnosis and classification of fluid power systems. - J. Syst. Contr. Eng., Vol. 211, No. 4, pp. 307-317.
[53] Weerasinghe M., Gomm J.B and Williams D. (1998): Neural networks for fault diagnosis of a nuclear fuel processing plant at different operating points. - Contr. Eng. Pract., Vol. 6, No. 2, pp. 281-289.
[54] Witczak M., Obuchowicz A. and Korbicz J. (2002): Genetic programming based approaches to identification and fault diagnosis of non-linear dynamic systems. - Int. J. Contr., Vol. 75, No. 13, pp. 1012-1031.
[55] Witczak M. (2003): Identification and Fault Detection of Nonlinear Dynamic Systems. - Zielona Góra: University of Zielona Góra Press.
[56] Witczak M. and Korbicz J. (2004): Observers and genetic programming in the identification and fault diagnosis of non-linear dynamic systems, In: Fault Diagnosis. Models, Artificial Intelligence, Applications (Korbicz J., Kościelny J.M., Kowalczuk Z. and Cholewa W., Eds.). - Berlin: Springer.
[57] Witczak M., Korbicz J., Mrugalski M. and Patton R.J. (2006):GMDH neural network-based approach to robust fault detection and its application to solve the DAMADICS benchmark problem. - Contr. Eng. Pract., Vol. 14, No. 6, pp. 671-683.
[58] Witczak M. and Prętki P. (2005): Designing neural-network-based fault detection systems with D-optimum experimental conditions. - Comput. Assist. Mech. Engi. Sci., Vol. 12, No. 2, pp. 279-291.
[59] Witczak M. (2006): Towards the training of feed-forward neural networks with the D-optimum input sequence. - IEEE Trans. Neural Netw., Vol. 17, No. 2, pp. 357-373.
[60] White H. (1989): Learning in artificial neural networks: A statistical perspective. - Neural Comput., Vol. 4, No. 4, pp. 305-318.
[61] Yen G.G. and Lin K. (2000): Wavelet packet feature extraction for vibration monitoring. - IEEE Trans. Ind. Electron., Vol. 47, No. 3, pp. 650-667.
[62] Zhang J., Ma J. and Yan Y. (2000): Assessing blockage of the sensing line in a differential-pressure flow sensor by using the wavelet transform of its output.-Meas. Sci. Technol., Vol. 11, No. 3, pp. 178-184.
[63] Zhao J., Chen B. and Shen J. (1998): Multidimensional nonorthogonal wavelet-sigmoid basis function neural network for dynamic process fault diagnosis. - Comput. Chem. Eng., Vol. 23, pp. 83-92.
[64] Zolghardi A., Henry D. and Monision M. (1996): Design of nonlinear observers for fault diagnosis. A case study.-Contr. Eng. Pract., Vol. 4, No. 11, pp. 1535-1544.