Optimal erasures in decision-feedback equalization for the Gaussian noise
International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 1, pp. 147-154.

Voir la notice de l'article provenant de la source Library of Science

A new method of optimizing decision feedback parameters for intersymbol interference equalizers is described. The coefficient existing in the decision feedback loop depends on risk qualification of the received decision. We prove that bit error probability can be decreased with this method for any channel with a single interference sample and small Gaussian noise. Experimental results are presented for selected channels. The dependences of optimal feedback parameters on channel interference samples and noise power are presented, too.
Keywords: data communication, decision feedback equalizer, intersymbol interference, error rate minimization
Mots-clés : transmisja danych, decyzyjne sprzężenie zwrotne, interferencja międzysymbolowa
@article{IJAMCS_2006_16_1_a10,
     author = {Kisilewicz, J. W. and Grzybowski, A.},
     title = {Optimal erasures in decision-feedback equalization for the {Gaussian} noise},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {147--154},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a10/}
}
TY  - JOUR
AU  - Kisilewicz, J. W.
AU  - Grzybowski, A.
TI  - Optimal erasures in decision-feedback equalization for the Gaussian noise
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2006
SP  - 147
EP  - 154
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a10/
LA  - en
ID  - IJAMCS_2006_16_1_a10
ER  - 
%0 Journal Article
%A Kisilewicz, J. W.
%A Grzybowski, A.
%T Optimal erasures in decision-feedback equalization for the Gaussian noise
%J International Journal of Applied Mathematics and Computer Science
%D 2006
%P 147-154
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a10/
%G en
%F IJAMCS_2006_16_1_a10
Kisilewicz, J. W.; Grzybowski, A. Optimal erasures in decision-feedback equalization for the Gaussian noise. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 1, pp. 147-154. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a10/

[1] Benedetto S., Biglieri E. and Castellani V. (1987): Digital Transmission Theory. -Englewood Clifs: Prentice Hall.

[2] Clark A.P. (1976): Principles of Digital Data Transmission. - London: Pentech Press.

[3] Dąbrowski A. (1982): Receiving data transmission signals in the presence of intersymbol interference and noise, In: Principles of Digital Data Transmission (Z. Baran, Ed.),Warsaw: WKŁ, pp. 60-100, (in Polish).

[4] Dąbrowski A. and Dymarski P. (Ed.) (2004): Principles of DataTransmission. - Warsaw: Warsaw University of Technology Press, (in Polish).

[5] Altekar S.A. and Beaulieu N.C. (1993): Upper bounds to the error probability of decision feedback equalization. -IEEE Trans. Inf. Theory, Vol. 39, No. 1, pp. 145-156.

[6] Bergmans J.W.M., Voorman J.O. and Wong-Lan W. (1997): Dual decision feedback equalizer. - IEEE Trans. Commun., Vol. 45, No. 5, pp. 514-518.

[7] Chiani M. (1997): Erasures in decision-feedback equalization to reduce error propagation. - IEEE Trans. Commun., Vol. 45, No. 7, pp. 757-760.

[8] Choy W.W. and Beaulieu N.C. (1997): Improved bounds for errorm recovery times of decision feedback equalization. - IEEE Trans. Inf. Theory, Vol. 43, No. 3, pp. 890-902.

[9] Grzybowski A. and Kisilewicz J. (1998): BER decreasing method using the receiving data reliability qualification for decision feedback equalizers. - Proc. Nat. Telecommunication Symp., Bydgoszcz, Poland, pp. 255-262.

[10] Hacioglu K. and Amca H. (1999): Decision feedback equalizer based on fuzzy logic. - Electron. Lett., Vol. 35, No. 7, pp. 548-549.

[11] Labat J. and Laot C. (2001): Blind adaptive multiple-input decision-feedback equalizer with a self-optimized configuration. -IEEE Trans. Commun., Vol. 49, No. 4, pp. 646-654.