Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2005_15_4_a6, author = {Callier, F. M. and Kraffer, F.}, title = {Proper feedback compensators for a strictly proper plant by polynomial equations}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {493--507}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a6/} }
TY - JOUR AU - Callier, F. M. AU - Kraffer, F. TI - Proper feedback compensators for a strictly proper plant by polynomial equations JO - International Journal of Applied Mathematics and Computer Science PY - 2005 SP - 493 EP - 507 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a6/ LA - en ID - IJAMCS_2005_15_4_a6 ER -
%0 Journal Article %A Callier, F. M. %A Kraffer, F. %T Proper feedback compensators for a strictly proper plant by polynomial equations %J International Journal of Applied Mathematics and Computer Science %D 2005 %P 493-507 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a6/ %G en %F IJAMCS_2005_15_4_a6
Callier, F. M.; Kraffer, F. Proper feedback compensators for a strictly proper plant by polynomial equations. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 4, pp. 493-507. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a6/
[1] Antoniou E.N. and Vardulakis A.I.G. (2005): On the computation and parametrization of proper denominator assigning compensators for strictly proper plants. — IMA J. Math. Contr. Inf., Vol. 22, pp. 12–25.
[2] Antsaklis P.J. and Gao Z. (1993): Polynomial and rational matrix interpolation theory and control applications. — Int. J. Contr., Vol. 58, No. 2, pp. 346–404.
[3] M. Athans and P. L. Falb (1966): Optimal Control.—New York: McGraw-Hill.
[4] Bitmead R.R., Kung S.-Y., Anderson B.D.O. and Kailath T. (1978): Greatest common divisors via generalized Sylvester and Bezout matrices. — IEEE Trans. Automat. Contr., Vol. 23, No. 7, pp. 1043–1047.
[5] Callier F.M. (2000): Proper feedback compensators for a strictly proper plant by solving polynomial equations. — Proc. Conf. Math. Models. Automat. Robot., MMAR, Międzyzdroje, Poland, Vol. 1, pp. 55–59.
[6] Callier F.M. (2001): Polynomial equations giving a proper feedback compensator for a strictly proper plant. — Prep. 1st IFAC/IEEE Symp. System Structure and Control, Prague, (CD-ROM).
[7] Callier F.M. and Desoer C.A. (1982): Multivariable Feedback Systems. —New York: Springer.
[8] Emre E. (1980): The polynomial equation QQc + RPc = Φ with applications to dynamic feedback. — SIAM J. Contr. Optim., Vol. 18, No. 6, pp. 611–620.
[9] Francis B.A. (1987): A Course in H∞ Control Theory. —New York: Springer.
[10] Fuhrmann P.A. (1976): Algebraic system theory: An analyst’s point of view.—J. Franklin Inst., Vol. 301, No. 6, pp. 521–540.
[11] Hagadoorn H. and Readman M. (2004): Coupled Drives, Part 1: Basics, Part 2: Control and Analysis. — Available at www.control-systems-principles.co.uk.
[12] Kailath T. (1980): Linear Systems. — Englewood Cliffs, N.J.: Prentice-Hall.
[13] Kraffer F. and Zagalak P. (2002): Parametrization and reliable extraction of proper compensators. — Kybernetika, Vol. 38, No. 5, pp. 521–540.
[14] Kučera V. (1979): Discrete Linear Control: The Polynomial Equation Approach. —Chichester, UK: Wiley.
[15] Kučera V. (1991): Analysis and Design of Discrete Linear Control Systems. —London: Prentice-Hall.
[16] Kučera V. and Zagalak P. (1999): Proper solutions of polynomial equations. — Prep. 14th IFAC World Congress, Beijing, Vol. D, pp. 357–362.
[17] Messner W. and Tilbury D. (1999): Example: DC Motor Speed Modeling, In: Control Tutorials for MATLAB and Simulink: A Web-Based Approach (W. Messner and D. Tilbury, Eds.). — Englewood Cliffs, N.J.: Prentice-Hall, Available at www.engin.umich.edu/group/ctm/examples/motor/motor.html.
[18] ProTyS, Inc. (2003): Personal communication.
[19] Rosenbrock H.H. and Hayton G.E. (1978): The general problem of pole assignment. — Int. J. Contr., Vol. 27, No. 6, pp. 837–852.
[20] Vidyasagar M. (1985): Control System Synthesis. —Cambridge MA: MIT Press.
[21] Wolovich W.A. (1974): Linear Multivariable Systems. — New York: Springer.
[22] Zagalak P. and Kučera V. (1985): The general problem of pole assignment. — IEEE Trans. Automat. Contr., Vol. 30, No. 3, pp. 286–289.