Proper feedback compensators for a strictly proper plant by polynomial equations
International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 4, pp. 493-507.

Voir la notice de l'article provenant de la source Library of Science

We review the polynomial matrix compensator equation XlDr + YlNr = Dk (COMP), e.g. (Callier and Desoer, 1982, Kučera, 1979; 1991), where (a) the right-coprime polynomial matrix pair (Nr,Dr) is given by the strictly proper rational plant right matrix-fraction P = NrD-1 r , (b) Dk is a given nonsingular stable closed-loop characteristic polynomial matrix, and (c) (Xl, Yl) is a polynomial matrix solution pair resulting possibly in a (stabilizing) rational compensator given by the left fraction C = X-1 l Yl. We recall first the class of all polynomial matrix pairs (Xl, Yl) solving (COMP) and then single out those pairs which result in a proper rational compensator. An important role is hereby played by the assumptions that (a) the plant denominator Dr is column-reduced, and (b) the closed-loop characteristic matrix Dk is row-column-reduced, e.g., monically diagonally degree-dominant. This allows us to get all solution pairs (Xl, Yl) giving a proper compensator with a row-reduced denominator Xl having (sufficiently large) row degrees prescribed a priori. Two examples enhance the tutorial value of the paper, revealing also a novel computational method.
Keywords: linear time-invariant feedback control systems, polynomial matrix systems, row-column-reduced polynomial matrices, feedback compensator design, flexible belt device
Mots-clés : liniowy układ stacjonarny, sprzężenie zwrotne, macierz wielomianowa, równanie wielomianowe
@article{IJAMCS_2005_15_4_a6,
     author = {Callier, F. M. and Kraffer, F.},
     title = {Proper feedback compensators for a strictly proper plant by polynomial equations},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {493--507},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a6/}
}
TY  - JOUR
AU  - Callier, F. M.
AU  - Kraffer, F.
TI  - Proper feedback compensators for a strictly proper plant by polynomial equations
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2005
SP  - 493
EP  - 507
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a6/
LA  - en
ID  - IJAMCS_2005_15_4_a6
ER  - 
%0 Journal Article
%A Callier, F. M.
%A Kraffer, F.
%T Proper feedback compensators for a strictly proper plant by polynomial equations
%J International Journal of Applied Mathematics and Computer Science
%D 2005
%P 493-507
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a6/
%G en
%F IJAMCS_2005_15_4_a6
Callier, F. M.; Kraffer, F. Proper feedback compensators for a strictly proper plant by polynomial equations. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 4, pp. 493-507. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a6/

[1] Antoniou E.N. and Vardulakis A.I.G. (2005): On the computation and parametrization of proper denominator assigning compensators for strictly proper plants. — IMA J. Math. Contr. Inf., Vol. 22, pp. 12–25.

[2] Antsaklis P.J. and Gao Z. (1993): Polynomial and rational matrix interpolation theory and control applications. — Int. J. Contr., Vol. 58, No. 2, pp. 346–404.

[3] M. Athans and P. L. Falb (1966): Optimal Control.—New York: McGraw-Hill.

[4] Bitmead R.R., Kung S.-Y., Anderson B.D.O. and Kailath T. (1978): Greatest common divisors via generalized Sylvester and Bezout matrices. — IEEE Trans. Automat. Contr., Vol. 23, No. 7, pp. 1043–1047.

[5] Callier F.M. (2000): Proper feedback compensators for a strictly proper plant by solving polynomial equations. — Proc. Conf. Math. Models. Automat. Robot., MMAR, Międzyzdroje, Poland, Vol. 1, pp. 55–59.

[6] Callier F.M. (2001): Polynomial equations giving a proper feedback compensator for a strictly proper plant. — Prep. 1st IFAC/IEEE Symp. System Structure and Control, Prague, (CD-ROM).

[7] Callier F.M. and Desoer C.A. (1982): Multivariable Feedback Systems. —New York: Springer.

[8] Emre E. (1980): The polynomial equation QQc + RPc = Φ with applications to dynamic feedback. — SIAM J. Contr. Optim., Vol. 18, No. 6, pp. 611–620.

[9] Francis B.A. (1987): A Course in H∞ Control Theory. —New York: Springer.

[10] Fuhrmann P.A. (1976): Algebraic system theory: An analyst’s point of view.—J. Franklin Inst., Vol. 301, No. 6, pp. 521–540.

[11] Hagadoorn H. and Readman M. (2004): Coupled Drives, Part 1: Basics, Part 2: Control and Analysis. — Available at www.control-systems-principles.co.uk.

[12] Kailath T. (1980): Linear Systems. — Englewood Cliffs, N.J.: Prentice-Hall.

[13] Kraffer F. and Zagalak P. (2002): Parametrization and reliable extraction of proper compensators. — Kybernetika, Vol. 38, No. 5, pp. 521–540.

[14] Kučera V. (1979): Discrete Linear Control: The Polynomial Equation Approach. —Chichester, UK: Wiley.

[15] Kučera V. (1991): Analysis and Design of Discrete Linear Control Systems. —London: Prentice-Hall.

[16] Kučera V. and Zagalak P. (1999): Proper solutions of polynomial equations. — Prep. 14th IFAC World Congress, Beijing, Vol. D, pp. 357–362.

[17] Messner W. and Tilbury D. (1999): Example: DC Motor Speed Modeling, In: Control Tutorials for MATLAB and Simulink: A Web-Based Approach (W. Messner and D. Tilbury, Eds.). — Englewood Cliffs, N.J.: Prentice-Hall, Available at www.engin.umich.edu/group/ctm/examples/motor/motor.html.

[18] ProTyS, Inc. (2003): Personal communication.

[19] Rosenbrock H.H. and Hayton G.E. (1978): The general problem of pole assignment. — Int. J. Contr., Vol. 27, No. 6, pp. 837–852.

[20] Vidyasagar M. (1985): Control System Synthesis. —Cambridge MA: MIT Press.

[21] Wolovich W.A. (1974): Linear Multivariable Systems. — New York: Springer.

[22] Zagalak P. and Kučera V. (1985): The general problem of pole assignment. — IEEE Trans. Automat. Contr., Vol. 30, No. 3, pp. 286–289.