Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2005_15_4_a4, author = {Andrysiak, T. and Chora\'s, M.}, title = {Image retrieval based on hierarchical {Gabor} filters}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {471--480}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a4/} }
TY - JOUR AU - Andrysiak, T. AU - Choraś, M. TI - Image retrieval based on hierarchical Gabor filters JO - International Journal of Applied Mathematics and Computer Science PY - 2005 SP - 471 EP - 480 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a4/ LA - en ID - IJAMCS_2005_15_4_a4 ER -
Andrysiak, T.; Choraś, M. Image retrieval based on hierarchical Gabor filters. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 4, pp. 471-480. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a4/
[1] Andrysiak T. and Choraś M. (2003): Hierarchical object recognition using Gabor wavelets. — Proc. Comput. Recogn. Syst., KOSYR, Miłków, Poland, pp. 271–278.
[2] Bigün J. and du Buf J.M.H. (1994): N-folded symmetries by complex moments in Gabor space. — IEEE Trans. Pattern Anal. Mach. Intell., Vol. 16, No. 1, pp. 80–87.
[3] Bigün J. and du Buf J.M.H. (1995): Symmetry interpretation of complex moments and the local power spectrum. — Vis. Commun. Image Represent., Vol. 6, No 2, pp. 154–163.
[4] Chen Y. and Wang J.Z. (2002): A region-based fuzzy feature matching approach to content-based image retrieval. — IEEE Trans. Pattern Anal. Machine Intell., Vol. 24, No. 9, pp. 1252–1269.
[5] Choraś R. (2003): Content-based retrieval using color, texture, and shape information, In: Progress in Pattern Recognition, Speech and Image Analysis (Alberto Sanfeliu, José Ruiz-Shulcloper, Eds.).—Berlin: Springer, pp. 619–626.
[6] Choraś R. (2004): Fuzzy processing technique for content based image retrieval, In: Artificial Intelligence and Soft Computing (L. Rutkowski et al., Eds.). — Springer, LNAI, Vol. 3070, pp. 448–451.
[7] Choraś R., Andrysiak T. and Choraś M. (2005): Content based image retrieval technique, In: Computer Recognition Systems (M. Kurzy´nski et al., Eds.).—Springer, pp. 371–379.
[8] Coggins J.M. and Jain A.K. (1985): A spatial texture approach to texture analysis. — Pattern Recogn. Lett., Vol. 3, No. 7, pp. 195–203.
[9] Conners R. and Harlow C. (1980): A theoretical comparison of texture algorithms.—IEEE Trans. Pattern Anal. Mach. Intell., Vol. 2, No. 3, pp. 204–222.
[10] Daugman J.G. (1985): Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters.—J. Opt. Soc. Amer. A, Vol. 2, No 7, pp. 1160–1169.
[11] Daugman J.G. (1988): Complete Discrete 2D Gabor Transforms by Neural Networks for Image Analysis and Compression. — IEEE Trans. Acoust., Speech Signal Process., Vol. 36, No. 7, pp. 1169–1179.
[12] Daugman J.G. (1998): Recognizing persons by their iris patterns, In: Biometrics: Personal Identification in Networked Society (A.K. Jain, R. Bolle and S. Pankanti, Eds.). — Kluwer Academic Publishers, pp. 103–121.
[13] Field D.J. (1987): Relations between the statistics of natural images and the response properties of cortical cells. —J.Optic. Soc. Amer., Vol. 4, No 12, pp. 2379–2394.
[14] Fogel I. and Sagi D. (1989): Gabor filters as texture discriminator. —Biol. Cybern., Vol. 61, pp. 103–113.
[15] Gabor D. (1946): Theory of communication. — J. Instit. Electr. Eng., Vol. 93, pp. 429–457.
[16] Hammamoto Y. (1999): A Gabor filter-based method for fingerprint identification, In: Intelligent Biometric Techniques in Fingerprint and Face Recognition (L.C. Jain, U. Halici et al., Eds.).—CRC Press, pp. 137–151.
[17] Jain A. and Farrokhnia F. (1991): Unsupervised texture segmentation using Gabor filters.—Pattern Recogn., Vol. 24, No. 12, pp. 1167–1186.
[18] Jain A., Ratha N. and Lakshmanan S. (1997): Object detection using Gabor filters. — Pattern Recogn., Vol. 30, No 2, pp. 295–309.
[19] Kruizinga P. and Petkov N. (1999): Non-linear operator for oriented texture. — IEEE Trans. Image Process., Vol. 8, No. 10, pp. 1395–1407.
[20] Kruizinga P., Petkov N. and Grigorescu S.E. (1999): Comparison of texture features based on Gabor filters.—Proc. Int. Conf. Image Analysis and Processing, IAP, Venice, Italy, pp. 142–147.
[21] Lee T. (1996): Image representation using 2D Gabor wavelets. —IEEE Trans. Pattern Anal. Mach. Intell., Vol. 18, No. 10, pp. 959–971.
[22] Liu C. and Wechsler H. (2001): A Gabor feature classifier for face recognition. — Proc. IEEE Int. Conf. Computer Vision, Vancouver, Canada, pp. 270–275.
[23] Ma W.Y. and Manjunath B.S. (1996): Texture Features and Learning Similarity.—Proc. IEEE Conf. Computer Vision and Pattern Recognition, San Francisco, USA, pp. 425–430.
[24] Malik J. and Perona P. (1990): Preattentive texture discrimination with early vision mechanisms.—J.Optic. Soc. Amer., A, Vol. 7, No 5, pp. 923–932.
[25] Manjunath B.S. and Ma W.Y. (1996): Texture Features for Browsing and Retrieval of Image Data. — IEEE Trans. Pattern Anal. Mach. Intell., Vol. 18, No 8, pp. 837–842.
[26] Marcelja S. (1980): Mathematical description of the responses of simple cortical cells. — J. Optic. Soc. Amer., Vol. 2, No 7, pp. 1297–1300.
[27] Mehrotra R., Namuduri K. and Ranganathan N. (1992): Gabor filter-based edge detection. — Pattern Recogn., Vol. 25, No 12, pp. 1479–1494.
[28] Namuduri K.R, Mehrotra R. and Ranganathan N. (1994): Efficient computation of Gabor filter based multiresolution responses.—Pattern Recogn., Vol. 27, No 7, pp. 925–938.
[29] Petkov N. and Kruizinga P. (1997): Computational models of visual neurons specialised in the detection of periodic and aperiodic oriented visual stimuli: Bar and grating cells.— Biolog. Cybern., Vol. 76, No 2, pp. 83–96.
[30] Petkov N. (1995): Biologically motivated computationally intensive approaches to image pattern recognition. — Future Gener. Comput. Syst., Vol. 11, pp. 451–465.
[31] Porat M. and Zeevi Y.Y. (1988): The generalized Gabor scheme of image representation in biological and machine vision. — IEEE Trans. Pattern Anal. Mach. Intell., Vol. 10, No 4, pp. 452–468.
[32] Smeulders A.W.M., Worring M., Gupta A. and Jain R. (2000): Content-based image retrieval at the end of the early years. —IEEE Trans. Pattern Anal.Mach. Intell., Vol. 22, No. 12, pp. 1349–1380.
[33] Spitzer H. and Hochstei S. (1985): A complex-cell receptive-field model. —J. Neurosci., Vol. 53, No. 5, pp. 1266–1286.
[34] Su Y.M. and Wang J.F. (2003): A novel stroke extraction method for Chinese characters using Gabor filters. — Pattern Recogn., Vol. 36, No. 3, pp. 635–647.
[35] Turner M.R. (1990): Texture discrimination by Gabor functions. — Biolog. Cybern., Vol. 55, No 1, pp. 55–73.
[36] Weldon T.P., Higgins W.E. and Dunn D.F. (1996): Efficient Gabor filter design for texture segmentation. — Pattern Recogn., Vol. 29, No. 12, pp. 2005–2015.
[37] Wiskott L., Fellous J.M., Kruger N. and Malsburg C.V.D. (1997): Face recognition by elastic bunch graph matching. — IEEE Trans. Pattern Anal. Mach. Intell., Vol. 19, No. 7, pp. 775–779.
[38] Young I.T, Vliet van L.J. and Ginkel van M. (2002): Recursive Gabor filtering. — IEEE Trans. Signal Process., Vol. 50, No. 11.