Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2005_15_4_a3, author = {Tarczy\'nski, A. and Qu, D.}, title = {Optimal random sampling for spectrum estimation in {DASP} applications}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {463--469}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a3/} }
TY - JOUR AU - Tarczyński, A. AU - Qu, D. TI - Optimal random sampling for spectrum estimation in DASP applications JO - International Journal of Applied Mathematics and Computer Science PY - 2005 SP - 463 EP - 469 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a3/ LA - en ID - IJAMCS_2005_15_4_a3 ER -
%0 Journal Article %A Tarczyński, A. %A Qu, D. %T Optimal random sampling for spectrum estimation in DASP applications %J International Journal of Applied Mathematics and Computer Science %D 2005 %P 463-469 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a3/ %G en %F IJAMCS_2005_15_4_a3
Tarczyński, A.; Qu, D. Optimal random sampling for spectrum estimation in DASP applications. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 4, pp. 463-469. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a3/
[1] Beutler F. (1970): Alias-free randomly timed sampling of stochastic processes. — IEEE Trans. Inf. Theory, Vol. IT-16, No. 2, pp. 147–152.
[2] Benedetto J. and Ferreira P.J.S.G. (2001): Modern Sampling Theory: Mathematics and Applications. — Boston, MA: Birkhaeuser.
[3] Bilinskis I. and Mikelsons M. (1992): Randomized Signal Processing. —London: Prentice Hall.
[4] Chen D. Shi and Allebach J.P. (1987): Analysis of error in reconstruction of two-dimensional signal from irregularly spaced samples. —Vol. ASSP-35, No.2, pp. 173–180.
[5] Feng P. and Bresler Y. (1996): Spectrum-blind minimum-rate sampling and reconstruction of multiband signals. — IEEE Int. Conf. Acoustics, Speech, and Signal Processing, ICASSP-96, Atlanta, GA, Vol. 3, pp. 1688–1691.
[6] Ferreira P.J.S.G. (1992): Incomplete sampling and the recovery of missing samples from oversampled band-limited signals. — IEEE Trans. Signal Process., Vol. 40, No.1, pp. 225–227.
[7] Herley C. and Wong P.W. (1999): Minimum rate sampling and reconstruction of signals with arbitrary frequency support. —IEEE Trans. Inf. Theory, Vol. 45, No. 5, pp. 1555–1564.
[8] Kida T. and Mochizuki H. (1992): Generalized interpolatory approximation of multi-dimensional signals having the minimum measure of error. — IEICE Trans. Fundamentals, Vol. E75-A, No. 7, pp. 794–805.
[9] Landau H.J. (1967): Necessary density conditions for sampling and interpolation of certain entire functions. —Acta Math., Vol. 117, pp. 37–52.
[10] Lomb N.R. (1976): Least-squares frequency analysis of unequally spaced data.—Astroph. Space Sc., Vol. 39, No. 2, pp. 447–462.
[11] Marvasti F. (1987): A Unified Approach to Zero-Crossing and Nonuniform Sampling of Single and Multidimensional Signals and Systems. — Oak Park IL: Nonuniform Publications.
[12] Marvasti F. (2001): Nonuniform Sampling, Theory and Practice. —New York: Kluwer.
[13] Masry E. (1978): Alias-free sampling: An alternative conceptualization and its applications. — IEEE Trans. Inf. Theory, Vol. 24, No. 3, pp. 317–324.
[14] Scargle J.D. (1982): Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. — Astronom. J., Vol. 263, No. 1, pp. 835–853.
[15] Scargle J.D. (1989): Studies in astronomical time series analysis. III. Fourier transforms, autocorrelation functions, and gross-correlation functions of unevenly spaced data. — Astronom. J., Vol. 343, No. 1, pp. 874–887.
[16] Shapiro H.S. and Silverman R.A. (1960): Alias-free sampling of random noise. — SIAM J. Appl. Math. Vol. 8, No. 2, pp. 225–236.
[17] Tarczyński A. (1997): Sensitivity of signal reconstruction. — IEEE Signal Process. Lett., Vol. 4, No. 7, pp. 192–194.
[18] Tarczyński A. and Allay N. (2004): Spectral analysis of randomly sampled signals: Suppression of aliasing and sampler jitter.—IEEE Trans. Signal Process., Vol. 52, No. 12, pp. 3324–3334.
[19] Tarczyński A. and Cain G.D. (1997): Reliability of signal reconstruction from finite sets of samples. — 1997 Workshop Sampling Theory and Applications, SAMPTA’97, Aveiro, Portugal, Vol. 1, pp. 181–186.
[20] Tarczyński A. and Valimaki V. (1996): Modifying FIR and IIR filters for processing signals with lost samples. — Proc. IEEE Nordic Signal Processing Symposium, NORSIG’96, Helsinki, Finland, Vol. 1, pp. 359–362.
[21] Tarczyński A., Valimaki V. and Cain G.D. (1997): FIR filtering of nonuniformly sampled signals. — IEEE Int. Conf. Acoustics, Speech and Signal Processing, ICASSP’97, Munich, Germany, Vol. 3, pp. 2237–2240.
[22] Venkataramani R. and Bresler Y. (2001): Optimal sub-Nyquist nonuniform sampling and reconstruction for multiband signals. — IEEE Trans. Signal Process., Vol. 49, No. 10, pp. 2301–2313.
[23] Weisstein E.W. (2003): CRC Concise Encyclopedia of Mathematics. —London, UK, Chapman Hall/CRC.
[24] Wingham D.J. (1992): The reconstruction of a band-limited function and its Fourier transform from a finite number of samples at arbitrary locations by singular value decomposition. — IEEE Trans. Signal Process., Vol. 40, No. 3, pp. 559–570.
[25] Yen J.L. (1956): On nonuniform sampling of bandwidth-limited signals.—IRE Trans. Circ. Theory, Vol. 3, No. 4, pp. 251–257.