Non-quadratic performance design for Takagi-Sugeno fuzzy systems
International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 3, pp. 383-391.

Voir la notice de l'article provenant de la source Library of Science

This paper improves controller synthesis of discrete Takagi-Sugeno fuzzy systems based on non-quadratic Lyapunov functions, making it possible to accomplish various kinds of control performance specifications such as decay rate conditions, requirements on control input and output and disturbance rejection. These extensions can be implemented via linear matrix inequalities, which are numerically solvable with commercially available software. The controller design is illustrated with an example.
Keywords: fuzzy control, Lyapunov functions, LMIs
Mots-clés : sterowanie rozmyte, funkcja Lapunowa, LMIs
@article{IJAMCS_2005_15_3_a6,
     author = {Bernal, M. and Husek, P.},
     title = {Non-quadratic performance design for {Takagi-Sugeno} fuzzy systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {383--391},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a6/}
}
TY  - JOUR
AU  - Bernal, M.
AU  - Husek, P.
TI  - Non-quadratic performance design for Takagi-Sugeno fuzzy systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2005
SP  - 383
EP  - 391
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a6/
LA  - en
ID  - IJAMCS_2005_15_3_a6
ER  - 
%0 Journal Article
%A Bernal, M.
%A Husek, P.
%T Non-quadratic performance design for Takagi-Sugeno fuzzy systems
%J International Journal of Applied Mathematics and Computer Science
%D 2005
%P 383-391
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a6/
%G en
%F IJAMCS_2005_15_3_a6
Bernal, M.; Husek, P. Non-quadratic performance design for Takagi-Sugeno fuzzy systems. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 3, pp. 383-391. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a6/

[1] Bernal M. and Hušek P. (2004a): Piecewise quadratic stability of parallel-distributed compensated Takagi-Sugeno fuzzy systems. — Proc. Int. Conf. Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 1417–1422.

[2] Bernal M. and Hušek P. (2004b): Piecewise quadratic stability of affine Takagi-Sugeno fuzzy control systems. —Proc. Advanced Fuzzy-Neural Control Conference, Oulu, Finland, pp. 157–162.

[3] Bernal M. and Hušek P. (2004c): Piecewise Quadratic Stability of Discrete-time Takagi-Sugeno Fuzzy Systems. — Proc. 2nd IFAC Symp. Syst., Structure and Control, Oaxaca, Mexico, pp. 771–775.

[4] Bernal M. and Hušek P. (2005a): Decay rate fuzzy controller design with piecewise Lyapunov functions. — Proc. 24th IASTED Int. Conf. Modeling, Identification and Control, Innsbruck, Austria, on CD-ROM.

[5] Bernal M. and Hušek P. (2005b): Controller synthesis with input and output constraints for fuzzy systems. —Proc. 16th IFAC World Congress, Prague, Czech Republic, on DVDROM.

[6] Bernal M. and Hušek P. (2005c): Non-quadratic discrete fuzzy controller design performing decay rate. — Proc. Int. Conf. FUZZ-IEEE, Reno, U.S.A., on CD-ROM.

[7] Farinwata S. S. and Vachtsevanos G. (1993): Stability analysis of the fuzzy logic controller. — Proc. IEEE CDC, San Antonio, U.S.A., pp. 1377–1382.

[8] Feng, G. (2003): Controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions. — IEEE Trans. Fuzzy Syst., Vol. 11, pp. 605–612.

[9] Feng G. (2004): Stability analysis of discrete time fuzzy dynamic systems based on piecewise Lyapunov functions. — IEEE Trans. Fuzzy Syst., Vol. 12, pp. 22–28.

[10] Guerra T.M. and Vermeiren L. (2004): LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in Takagi-Sugeno’s form. — Automatica, Vol. 40, pp. 823–829.

[11] Johansson M., Rantzer A. and Arzen K. (1999): Piecewise quadratic stability of fuzzy systems. — IEEE Trans. Fuzzy Syst., Vol. 7, pp. 713–722.

[12] Rantzer A. and JohanssonM. (2000): Piecewise linear quadratic optimal control. — IEEE Trans. Automat. Contr., Vol. 45, pp. 629–637.

[13] Tanaka K., Hori T. and Wang H.O.(2003): A multiple function approach to stabilization of fuzzy control systems.—IEEE Trans. Fuzzy Syst., Vol. 11, pp. 582–589.

[14] Takagi T. and Sugeno M. (1985): Fuzzy identification of systems and its applications to modeling and control.—IEEE Trans. Syst., Man Cybern., Vol. 15, pp. 116–132.

[15] Tanaka K. and Wang H. O. (2001): Fuzzy Control Systems Design and Analysis. — New York: Wiley.

[16] Tanaka K. and Sano M. (1994): A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer. — IEEE Trans. Fuzzy Syst., Vol. 2, pp. 119–134.

[17] Tanaka K. and Sugeno M. (1990): Stability analysis of fuzzy systems using Lyapunov’s direct method. — Proc. North American Fuzzy Information Processing Society (NAFIPS’90), Canada: Toronto, pp. 133–136.

[18] Tanaka K. and Sugeno M. (1992): Stability analysis and design of fuzzy control systems. — Fuzzy Sets Syst., Vol. 45, No. 2, pp. 135–156.

[19] Tanaka K., Ikeda T. and Wang H. O. (1998): Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based designs. — IEEE Trans. Fuzzy Syst., Vol. 6, pp. 250–264.

[20] Wang H. O., Tanaka K. and Griffin M. (1996): An approach to fuzzy control of nonlinear systems: Stability and design issues. — IEEE Trans. Fuzzy Syst., Vol. 4, pp. 14–23.