Stabilising solutions to a class of nonlinear optimal state tracking problems using radial basis function networks
International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 3, pp. 369-381.

Voir la notice de l'article provenant de la source Library of Science

A controller architecture for nonlinear systems described by Gaussian RBF neural networks is proposed. The controller is a stabilising solution to a class of nonlinear optimal state tracking problems and consists of a combination of a state feedback stabilising regulator and a feedforward neuro-controller. The state feedback stabilising regulator is computed online by transforming the tracking problem into a more manageable regulation one, which is solved within the framework of a nonlinear predictive control strategy with guaranteed stability. The feedforward neuro-controller has been designed using the concept of inverse mapping. The proposed control scheme is demonstrated on a simulated single-link robotic manipulator.
Keywords: nonlinear systems, optimal control, radial basis functions, neural networks, predictive control, feedforward control
Mots-clés : system nieliniowy, sterowanie optymalne, radialna funkcja bazowa, sieć neuronowa, regulacja predykcyjna, sterowanie wyprzedzające
@article{IJAMCS_2005_15_3_a5,
     author = {Ahmida, Z. and Charef, A. and Becerra, V. M.},
     title = {Stabilising solutions to a class of nonlinear optimal state tracking problems using radial basis function networks},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {369--381},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a5/}
}
TY  - JOUR
AU  - Ahmida, Z.
AU  - Charef, A.
AU  - Becerra, V. M.
TI  - Stabilising solutions to a class of nonlinear optimal state tracking problems using radial basis function networks
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2005
SP  - 369
EP  - 381
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a5/
LA  - en
ID  - IJAMCS_2005_15_3_a5
ER  - 
%0 Journal Article
%A Ahmida, Z.
%A Charef, A.
%A Becerra, V. M.
%T Stabilising solutions to a class of nonlinear optimal state tracking problems using radial basis function networks
%J International Journal of Applied Mathematics and Computer Science
%D 2005
%P 369-381
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a5/
%G en
%F IJAMCS_2005_15_3_a5
Ahmida, Z.; Charef, A.; Becerra, V. M. Stabilising solutions to a class of nonlinear optimal state tracking problems using radial basis function networks. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 3, pp. 369-381. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a5/

[1] Becerra V.M., Roberts P.D. and Griffiths G.W. (1998): Novel developments in process optimisation using predictive control.— J. Process Contr., Vol. 8, No. 2, pp. 117–138.

[2] Becerra V.M., Abu-el-zeet Z.H. and Roberts P.D. (1999): Integrating predictive control and economic optimisation. — Comput. Contr. Eng. J., Vol. 10, No. 5, pp. 198–208.

[3] Chen C.C. and Shaw L. (1982): On receding horizon feedback control. —Automatica, Vol. 18, No. 3, pp. 349–352.

[4] Chen H. and Allgöwer F. (1998): A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability.— Automatica, Vol. 34, No. 10, pp. 1205–1217.

[5] De Nicolao G., Magni L. and Scattolini R. (1997): Stabilizing receding-horizon control of nonlinear time-varying systems. — IEEE Trans. Automat. Contr., Vol. 43, No. 7, pp. 1030–1036.

[6] Eaton J.W. and Rawlings J.B. (1992): Model predictive control of chemical processes. —Chem. Eng. Sci., Vol. 47, No. 4, pp. 705–720.

[7] Garces F., Becerra V.M., Kambhampati C. and Warwick K. (2003): Strategies for Feedback Linearisation: A Dynamic Neural Network Approach. —London: Springer.

[8] Garcia C.E., Prett D.M. and Morari M. (1989): Model predictive control: Theory and practice—A survey. — Automatica, Vol. 25, No. 3, pp. 335–347.

[9] Hornik K., Stinchcombe M. and White H. (1989): Multilayer feedforward networks are universal approximators. — Neural Networks, Vol. 2, No. 5, pp. 359–366.

[10] Hunt K.J., Sbarbaro D., Zbikowski R. and Gawthrop P.J. (1992): Neural networks for control systems: A survey. — Automatica, Vol. 28, No. 6, pp. 1083–1112.

[11] Kadirkamanathan V. and Niranjan M. (1993): A function estimation approach to sequential learning with neural networks. — Neural Comput., Vol. 5, No. 6, pp. 954–975.

[12] Kambhampati C., Delgado A., Mason J.D. and Warwick K. (1997): Stable receding horizon control based on recurrent networks. — IEE Proc. Contr. Theory Applic., Vol. 144, No. 3, pp. 249–254.

[13] Keerthi S.S. and Gilbert E.G. (1988): Optimal, infinite-horizon feedback laws for a general class of constrained discretetime systems. — J. Optim. Theory Applic., Vol. 57, No. 2, pp. 265–293.

[14] Kwakernaak H. and Sivan R. (1972): Linear Optimal Control Systems. — New York: Wiley.

[15] Magni L., De Nicolao G., Magnani L. and Scattolini R. (2001): A stabilizing model-based predictive control algorithm for nonlinear systems. — Automatica, Vol. 37, No. 9, pp. 1351–1362.

[16] Mayne D.Q. and Michalska H. (1990): Receding horizon control of nonlinear systems.—IEEE Trans. Automat. Contr., Vol. 35, No. 7, pp. 814–824.

[17] Mayne D.Q., Rawlings J.B., Rao C.V. and Scokaert P.O.M. (2000): Constrained model predictive control: Stability and optimality. — Automatica, Vol. 36, No. 6, pp. 789–814.

[18] Michalska H. and Mayne D.Q. (1993): Robust receding horizon control of constrained nonlinear systems. — IEEE Trans. Automat. Contr., Vol. 38, No. 11, pp. 1623–1633.

[19] Morari M. and Lee J.H. (1999): Model predictive control: Past, present and future.—Comput. Chem. Eng., Vol. 23, No. 4, pp. 667–682.

[20] Narendra K.S. and Parthasarathy K. (1990): Identification and control of dynamical using neural networks. — IEEE Trans. Neural Netw., Vol. 1, No. 1, pp. 4–27.

[21] Parisini T. and Zoppoli R. (1995): A receding-horizon regulator for nonlinear systems and a neural approximation. — Automatica, Vol. 31, No. 10, pp. 1443–1451.

[22] Parisini T., Sanguinetti M. and Zoppoli R. (1998): Nonlinear stabilization by receding-horizon neural regulators. — Int. J. Contr., Vol. 70, No. 3, pp. 341–362.

[23] Park Y.M., Choi M.S. and Lee K.W. (1996): An optimal tracking neuro-controller for nonlinear dynamic systems. — IEEE Trans. Neural Netw., Vol. 7, No. 5, pp. 1099–1110.

[24] Richalet J. (1993): Industrial applications of model based predictive control. — Automatica, Vol. 29, No. 5, pp. 1251–1274.

[25] Richalet J., Rault A., Testud J.L. and Papon J. (1978): Model predictive heuristic control: Application to industrial processes. —Automatica, Vol. 14, No. 2, pp. 413–428.

[26] Yingwei L., Sundararajan N. and Saratchandran P. (1997): Identification of time-varying nonlinear systems using minimal radial basis function neural networks. — IEE Proc. Contr. Theory Appl., Vol. 144, No. 2, pp. 202–208.

[27] Zhihong M., Wu H.R. and Palaniswami M. (1998): An adaptive tracking controller using neural networks for a class of nonlinear systems.—IEEE Trans. Neural Netw., Vol. 9, No. 5, pp. 947–954.