Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2005_15_3_a4, author = {Ga{\l}uszka, A. and \'Swierniak, A.}, title = {Non-cooperative game approach to multi-robot planning}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {359--367}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a4/} }
TY - JOUR AU - Gałuszka, A. AU - Świerniak, A. TI - Non-cooperative game approach to multi-robot planning JO - International Journal of Applied Mathematics and Computer Science PY - 2005 SP - 359 EP - 367 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a4/ LA - en ID - IJAMCS_2005_15_3_a4 ER -
%0 Journal Article %A Gałuszka, A. %A Świerniak, A. %T Non-cooperative game approach to multi-robot planning %J International Journal of Applied Mathematics and Computer Science %D 2005 %P 359-367 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a4/ %G en %F IJAMCS_2005_15_3_a4
Gałuszka, A.; Świerniak, A. Non-cooperative game approach to multi-robot planning. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 3, pp. 359-367. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a4/
[1] Avriel M., Penn M., Shpirer N. and Witteboon S. (1998): Stowage planning for container ships to reduce the number of shifts.— Ann. Oper. Res., Vol. 76, pp. 55–71.
[2] Avriel M., Penn M. and Shpirer N. (2000): Container ship stowage problem: complexity and connection to the coloring of circle graphs. — Discr. Appl. Math., Vol. 103, pp. 271–279.
[3] Baral Ch., Kreinovich V. and Trejo R. (2000): Computational complexity of planning and approximate planning in the presence of incompleteness. — Artif. Intell., Vol. 122, pp. 241–267.
[4] Basar T. and Olsder G.J. (1982): Dynamic Noncooperative Game Theory. — New York: Academic Press.
[5] Belker T., Beetz M. and Cremers. A.B. (2002): Learning of plan execution policies for indoor navigation. — AI Comm., Vol. 15, No. 1, pp. 3–16.
[6] Bish E.K., Leong T.Y., Li C.L., Ng J.W.C. and Simchi-Levi D. (2001): Analysis of a new vehicle scheduling and location problem. —Naval Res. Logist., Vol. 48, pp. 363–385.
[7] Boutilier C. and Brafman R.I. (2001): Partial-order planning with concurrent interacting. — Actions. J. Artif. Intell. Res., Vol. 14, pp. 105–136.
[8] Bylander T. (1994): The computational complexity of propositional STRIPS planning. —Artif. Intell., Vol. 69, pp. 165– 204.
[9] Fabricant A., Papadimitriou Ch. and Talvar K. (2004): The complexity of pure Nash equilibria. —Proc. ACM Symp. Theory of Computing, Chicago, pp. 604–612.
[10] Gałuszka A. and Świerniak A. (2002): Planning in multi-agent environment as inverted STRIPS planning in the presence of uncertainty, In: Recent Advances In Computers, Computing and Communications (N. Mastorakis and V. Maldenov, Eds.).—Athens: WSEAS Press, pp. 58–63.
[11] Gałuszka A. and Świerniak A. (2003): STRIPS representation and non-cooperative strategies in multi-robot planning. — Proc. 15th European Simulation Symposium (SCS), Delft, the Netherlands, pp. 110–115.
[12] Gałuszka A. and Świerniak A. (2003a): Invertible planning and non-cooperative equilibrium strategies in multi-agent planning.—Proc. 11th IEEE Mediterranean Conf. Control Automation, Rhodos, Greece, CD-ROM.
[13] Gupta N. and Nau D.S. (1992): On the complexity of Blocks-World Planning. — Artif. Intell., Vol. 56, No. 2–3, pp. 223–254.
[14] Howe A.E. and Dahlman E. (2002): A critical assessment of benchmark comparison in planning. — J. Artif. Intell. Res., Vol. 17, pp. 1–33.
[15] Imai A., Nishimura E. and Papadimitriou S. (2001): The dynamic berth allocation problem for a container port. — Transp. Res., Vol. B 35, pp. 401–417.
[16] Isil Bozma H. and Koditschek D.E. (2001): Assembly as a noncooperative game of its pieces: Analysis of 1D sphere assemblies. —Robotica, Vol. 19, pp. 93–108.
[17] Karacapilidis N.I. and Papadias D. (1998): A computational approach for argumentative discourse in multi-agent decision making environment.—AI Comm., Vol. 11, No. 1, pp. 21–33.
[18] Koehler J. and Hoffmann J. (2000): On reasonable and forced goal orderings and their use in an agenda-driven planning algorithm. — J. Artif. Intell. Res., Vol. 12, pp. 339–386.
[19] Kraus S., Sycara K. and Evenchik A. (1998): Reaching agreements through argumentation: A logical model and implementation. —Artif. Intell., Vol. 1, No. 4, pp. 1–69.
[20] Mc Kinsey J.C. (1952): Introduction to the Theory of Games. — New York: Mc Graw Hill.
[21] Mesterton-Gibbons M. (2001): An Introduction to Game-Theoretic Modelling.—Providence, RI: American Mathematical Society.
[22] Nilson N.J. (1980): Principles of Artificial Intelligence. — Palo Alto, CA: Toga Publishing Company.
[23] Papadimitriou Ch. (2001): Algorithms, games and the Internet. — Proc. ACM Symp. Theory of Computing, Hersonissos, Greece, pp. 749–753.
[24] Papadimitriou Ch. (2001a): Theory of the Complexity. — Warsaw: Polish Scientific Publishers.
[25] Skrzypczyk K. (2005): Control of a team of mobile robots based on non-cooperative equilibria with partial coordination. — Int. J. Appl. Math. Comp. Sci., Vol. 15, No. 1, pp. 89–97.
[26] Slaney J. and Thiebaux S. (2001): Block World revisited. — Artif. Intell., Vol. 125, pp. 119–153.
[27] Slavin T. (1996): Virtual port of call. — New Scientist, No. 15, pp. 40–43.
[28] Smith D.E. and Weld D.S. (1998): Conformant graphplan. — Proc. 15th Nat. Conf. Artificial Intelligence, Madison, Wisconsin, USA, pp. 889–896.
[29] Weld D.S. (1999): Recent Advantages in AI Planning. — AI Mag. Vol. 20, No. 2, pp. 93–123.
[30] Weld D.S., Anderson C.R. and Smith D.E. (1998): Extending graphplan to handle uncertainty sensing actions. — Proc. 15th Nat. Conf. Artificial Intelligence, Madison, Wisconsin, USA, pp. 897–904.
[31] Wilson I.D. and Roach P.A. (2000): Container stowage planning: A methodology for generating computerised solutions. —J. Oper. Res. Soc., Vol. 51, pp. 1248–1255.
[32] Yale Center for Computational Vision and Control (1998): PDDL – The planning domain definition language. —Tech. Report CVC TR-98-003/DCS TR-1165.
[33] Zhang Y., Wu Ch. and Bai Y. (2001): Implementing prioritized logic programming.—AI Comm., Vol. 14, No. 4, pp. 183–196.