Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2005_15_3_a3, author = {Filipovic, V.}, title = {Stochastic multivariable self-tuning tracker for {non-Gaussian} systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {351--357}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a3/} }
TY - JOUR AU - Filipovic, V. TI - Stochastic multivariable self-tuning tracker for non-Gaussian systems JO - International Journal of Applied Mathematics and Computer Science PY - 2005 SP - 351 EP - 357 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a3/ LA - en ID - IJAMCS_2005_15_3_a3 ER -
%0 Journal Article %A Filipovic, V. %T Stochastic multivariable self-tuning tracker for non-Gaussian systems %J International Journal of Applied Mathematics and Computer Science %D 2005 %P 351-357 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a3/ %G en %F IJAMCS_2005_15_3_a3
Filipovic, V. Stochastic multivariable self-tuning tracker for non-Gaussian systems. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 3, pp. 351-357. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a3/
[1] Åström K.J. and Wittenmark B. (1973): On self-tuning regulators. —Automatica, Vol. 9, No. 2, pp. 185–199.
[2] Åström K.J. and Wittenmark B. (1989): Adaptive Control. — New York: Addison Wesley.
[3] Åström K.J. and Wittenmark B. (1995): Adaptive Control. — New York: Addison Wesley.
[4] Becker J.A.H, Kumar P.R. and Wei C.Z. (1985): Adaptive control with the stochastic approximation algorithm. — IEEE Trans. Automat. Contr., Vol. 30, pp. 330–338.
[5] Bercu B. (1995): Weighted estimation and tracking for ARMAX models. — SIAM J. Contr. Optim., Vol. 33, No. 1, pp. 89–106.
[6] Caines P. (1988): Linear Stochastic Systems. — New York: Wiley.
[7] Chen H.F. and Guo L. (1991): Identification and Stochastic Adaptive Control. —Basel: Birkhäuser.
[8] Desoer C.A. and Vidyasagar M. (1975): Feedback Systems: Input-Output Properties.—New York: Academic Press.
[9] Duflo M. (1997): Random Iterative Models. — New York: Springer.
[10] Filipovic V. and Kovacevic B. (1994): On robust AML identification algorithms.—Automatica, Vol. 30, No. 12, pp. 1775–1778.
[11] Filipovic V. (1996): Robustness of adaptive tracking for stochastic multivariable minimum variance controller. — Proc. 13th IFAC World Congress, San Francisco, USA, Vol. K, pp. 391–396.
[12] Filipovic V. (1999): Convergence and optimality of stochastic adaptive control scheme when the disturbance is non-Gaussian. — Proc. 14th IFAC World Congress, Beijing, China, pp. 875–880.
[13] Filipovic V. (2001): Robust adaptive one-step ahead predictor. —IMA J. Math. Contr. Inf. Vol. 18, pp. 491–500.
[14] Goodwin G.C. and Sin K.S. (1984): Adaptive Filtering, Prediction and Control. —New Jersey: Prentice-Hall.
[15] Goodwin G.C., Ramadge P. and Caines P. (1981): Discrete time stochastic adaptive control. — SIAM J. Contr. Optim., Vol. 19, No. 6, pp. 829–853.
[16] Hall P. and Heyde C.C. (1980): Martingale Limit Theory and Its Applications. — New York: Academic Press.
[17] Huber P. (2003): Robust Statistics.— New York: Wiley.
[18] Hubert M., Pison G., Strouf A. and Van Aelst S. (Eds.) (2004): Theory and Applications of Recent Robust Methods. — Basel: Birkhauser.
[19] Ioannou P.A. and Sun J. (1996): Robust Adaptive Control. — New Jersey: Prentice Hall.
[20] Kumar P.R. and Varaija P. (1986): Stochastic Systems: Estimation, Identification, and Adaptive Control. — New Jersey: Prentice Hall.
[21] Kumar P.R. and Praly L. (1987): Self-tuning tracker. — SIAM J. Contr. Optim., Vol. 25, No. 4, pp. 1053–1071.
[22] Kushner J.H. and Yin G.G. (2003): Stochastic Approximation. Algorithms and Applications. —New York: Springer.
[23] Landau I.D., Lozano R. and M’Saad M. (1998): Adaptive Control.— New York: Springer.
[24] Lai T.L. and Wei C.Z. (1986): Extended least squares and their applications to adaptive control and prediction in linear systems. — IEEE Trans. Automat. Contr., Vol. 31, No. 6, pp. 898–906.
[25] Lin W., Kumar P.R. and Seidman T. (1985): Will the self-tuning approach work for general cost criteria? — Syst. Contr. Lett., Vol. 6, No. 1, pp. 77–85.
[26] Lucas A., Frances P.H. and Van Dijk D. (2005): Outlier Robust Analysis of Economic Time Series.—Oxford: Oxford University Press.
[27] Praly L., Lin S.F. and Kumar P.R. (1989): A robust adaptive minimum variance controller. — SIAM J. Contr. Optim., Vol. 27, No. 2, pp. 235–266.
[28] Radenkovic M.S. and Michel A.N. (1992): Robust adaptive systems and self-stabilization. — IEEE Trans. Automat. Contr., Vol. 37, No. 9, pp. 1355–1369.
[29] Robins H. and Siegmund D. (1971): A convergence theory for nonnegative almost supermartingale and same applications, In: Optimization Methods in Statistics (J.S. Rustagi, Ed.).—New York: Academic Press, p. 233–257.
[30] Rudin V. (1964): Principles of Mathematical Analysis. — New York: Mc Graw Hill.
[31] Sastry S. and Bodson M. (1989): Adaptive Control: Stability, Convergence and Robustness. — New Jersey: Prentice Hall.
[32] Shiryayev A.N. (2004): Probability, Vols. 1 and 2. —Moscow: MCNMO, (in Russian).