On the computation of the minimal polynomial of a polynomial matrix
International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 3, pp. 339-349.

Voir la notice de l'article provenant de la source Library of Science

The main contribution of this work is to provide two algorithms for the computation of the minimal polynomial of univariate polynomial matrices. The first algorithm is based on the solution of linear matrix equations while the second one employs DFT techniques. The whole theory is illustrated with examples.
Keywords: minimal polynomial, discrete Fourier transform, polynomial matrix, linear matrix equations
Mots-clés : wielomian minimalny, dyskretna transformacja Fouriera, macierz wielomianowa, macierzowe równanie liniowe
@article{IJAMCS_2005_15_3_a2,
     author = {Karampetakis, P. and Tzekis, P.},
     title = {On the computation of the minimal polynomial of a polynomial matrix},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {339--349},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a2/}
}
TY  - JOUR
AU  - Karampetakis, P.
AU  - Tzekis, P.
TI  - On the computation of the minimal polynomial of a polynomial matrix
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2005
SP  - 339
EP  - 349
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a2/
LA  - en
ID  - IJAMCS_2005_15_3_a2
ER  - 
%0 Journal Article
%A Karampetakis, P.
%A Tzekis, P.
%T On the computation of the minimal polynomial of a polynomial matrix
%J International Journal of Applied Mathematics and Computer Science
%D 2005
%P 339-349
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a2/
%G en
%F IJAMCS_2005_15_3_a2
Karampetakis, P.; Tzekis, P. On the computation of the minimal polynomial of a polynomial matrix. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 3, pp. 339-349. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a2/

[1] Atiyah M.F. and McDonald I.G. (1964): Introduction to Commutative Algebra. —Reading, MA: Addison-Wesley.

[2] Augot D. and Camion P. (1997): On the computation of minimal polynomials, cyclic vectors, and Frobenius forms. — Lin. Alg. App., Vol. 260, pp. 61–94.

[3] Ciftcibaci T. and Yuksel O. (1982): On the Cayley-Hamllton theorem for two-dimensional systems. — IEEE Trans. Automat. Contr., Vol. 27, No. 1, pp. 193–194.

[4] Coppersmith D. and Winograd S. (1990): Matrix multiplication via arithmetic progressions. — J. Symb. Comput., Vol. 9, No.3, pp. 251–280.

[5] Faddeev D.K. and Faddeeva V.N. (1963): Computational Methods of Linear Algebra. — San Francisco: Freeman.

[6] Fragulis G.F., Mertzios B. and Vardulakis A.I.G. (1991): Computation of the inverse of a polynomial matrix and evaluation of its Laurent expansion. — Int. J. Contr., Vol. 53, No. 2, pp. 431–443.

[7] Fragulis G.F. (1995): Generalized Cayley-Hamilton theorem for polynomial matrices with arbitrary degree. — Int. J. Contr., Vol. 62, No. 6, pp. 1341–1349.

[8] Gałkowski K. (1996): Matrix description of polynomials multivariable. — Lin. Alg. Applic., Vol. 234, pp. 209–226.

[9] Gantmacher F.R. (1959): The Theory of Matrices.—New York: Chelsea.

[10] Givone D.D. and Roesser R.P. (1973): Minimization of multidimensional linear iterative circuits. — IEEE Trans. Comput., Vol. C-22. pp. 673–678.

[11] Helmberg G., Wagner P. and Veltkamp G. (1993): On Faddeev-Leverrier’s method for the computation of the characteristic polynomial of a matrix and of eigenvectors.—Lin. Alg. Applic., Vol. 185, pp. 219–223.

[12] Kaczorek T. (1989): Existence and uniqueness of solutions and Cayley-Hamilton theorem for a general singular model of 2-D systems. — Bull. Polish Acad. Sci. Techn. Sci., Vol. 37, No. 5-6, pp. 275–284.

[13] Kaczorek T. (1995a): An extension of the Cayley-Hamilton theorem for 2-D continuous-discrete linear systems. — Appl. Math. Comput. Sci., Vol. 4, No. 4, pp. 507–515.

[14] Kaczorek T. (1995b): Generalization of the Cayley–Hamilton theorem for nonsquare matrices. — Proc. Int. Conf. Fundamentals of Electrotechnics and Circuit Theory XVIIISPETO, Gliwice-Ustroń, Poland, pp. 77–83.

[15] Kaczorek T. (1995c): An extension of the Cayley-Hamilton theorem for nonsquare block matrices and computation of the left and right inverses of matrices. — Bull. Polish Acad. Sci. Techn. Sci., Vol. 43, No. 1, pp. 49–56.

[16] Kaczorek T. (1995d): An extension of the Cayley-Hamilton theorem for singular 2D linear systems with non-square matrices.— Bull. Polish Acad. Sci., Techn. Sci., Vol. 43, No. 1, pp. 39–48.

[17] Kaczorek T. (1998): An extension of the Cayley-Hamilton theorem for a standard pair of block matrices. — Appl. Math. Comput. Sci., Vol. 8, No. 3, pp. 511–516.

[18] Kaczorek T. (2005): Generalization of Cayley-Hamilton theorem for n-D polynomial matrices.—IEEE Trans. Automat. Contr., Vol. 50, No. 5, pp.671–674.

[19] Kitamoto T. (1999): Efficient computation of the characteristic polynomial of a polynomial matrix. — IEICE Trans. Fundament., Vol. E83-A, No.5, pp. 842–848.

[20] Lewis F.L. (1986): Further remarks on the Cayley-Hamilton theorem and Leverrier’s method for the matrix pencil (sE − A).—IEEE Trans. Automat. Contr., Vol. 31, No. 9, pp. 869–870.

[21] Mertzios B. and Christodoulou M. (1986): On the generalized Cayley-Hamilton theorem. — IEEE Trans. Automat. Contr., Vol. 31, No. 2, pp. 156–157.

[22] Paccagnella L. E. and Pierobon G. L. (1976): FFT calculation of a determinantal polynomial. — IEEE Trans. Automat. Contr., Vol. 21, No. 3, pp. 401–402.

[23] Schuster A. and Hippe P. (1992): Inversion of polynomial matrices by interpolation. — IEEE Trans. Automat. Contr., Vol. 37, No. 3, pp. 363–365.

[24] Theodorou N.J. (1989): M-dimensional Cayley-Hamilton theorem. — IEEE Trans. Automat. Contr., Vol. 34, No. 5, pp. 563–565.

[25] Tzekis P. and Karampetakis N. (2005): On the computation of the minimal polynomial of a two-variable polynomial matrix. — Proc. 4th Int. Workshop Multidimensional (nD) Systems, Wuppertal, Germany.

[26] Victoria J. (1982): A block Cayley-Hamilton theorem. — Bull. Math. Soc. Sci. Math. Roum., Vol. 26, No. 1, pp. 93–97.

[27] Vilfan B. (1973): Another proof of the two-dimensional Cayley–Hamilton theorem. — IEEE Trans. Comput., Vol. C-22, pp. 1140.

[28] Yu B. and Kitamoto T. (2000): The CHACM method for computing the characteristic polynomial of a polynomial matrix.—IEICE Trans. Fundament., E83-A, No.7, pp. 1405–1410.