Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2005_15_3_a2, author = {Karampetakis, P. and Tzekis, P.}, title = {On the computation of the minimal polynomial of a polynomial matrix}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {339--349}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a2/} }
TY - JOUR AU - Karampetakis, P. AU - Tzekis, P. TI - On the computation of the minimal polynomial of a polynomial matrix JO - International Journal of Applied Mathematics and Computer Science PY - 2005 SP - 339 EP - 349 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a2/ LA - en ID - IJAMCS_2005_15_3_a2 ER -
%0 Journal Article %A Karampetakis, P. %A Tzekis, P. %T On the computation of the minimal polynomial of a polynomial matrix %J International Journal of Applied Mathematics and Computer Science %D 2005 %P 339-349 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a2/ %G en %F IJAMCS_2005_15_3_a2
Karampetakis, P.; Tzekis, P. On the computation of the minimal polynomial of a polynomial matrix. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 3, pp. 339-349. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a2/
[1] Atiyah M.F. and McDonald I.G. (1964): Introduction to Commutative Algebra. —Reading, MA: Addison-Wesley.
[2] Augot D. and Camion P. (1997): On the computation of minimal polynomials, cyclic vectors, and Frobenius forms. — Lin. Alg. App., Vol. 260, pp. 61–94.
[3] Ciftcibaci T. and Yuksel O. (1982): On the Cayley-Hamllton theorem for two-dimensional systems. — IEEE Trans. Automat. Contr., Vol. 27, No. 1, pp. 193–194.
[4] Coppersmith D. and Winograd S. (1990): Matrix multiplication via arithmetic progressions. — J. Symb. Comput., Vol. 9, No.3, pp. 251–280.
[5] Faddeev D.K. and Faddeeva V.N. (1963): Computational Methods of Linear Algebra. — San Francisco: Freeman.
[6] Fragulis G.F., Mertzios B. and Vardulakis A.I.G. (1991): Computation of the inverse of a polynomial matrix and evaluation of its Laurent expansion. — Int. J. Contr., Vol. 53, No. 2, pp. 431–443.
[7] Fragulis G.F. (1995): Generalized Cayley-Hamilton theorem for polynomial matrices with arbitrary degree. — Int. J. Contr., Vol. 62, No. 6, pp. 1341–1349.
[8] Gałkowski K. (1996): Matrix description of polynomials multivariable. — Lin. Alg. Applic., Vol. 234, pp. 209–226.
[9] Gantmacher F.R. (1959): The Theory of Matrices.—New York: Chelsea.
[10] Givone D.D. and Roesser R.P. (1973): Minimization of multidimensional linear iterative circuits. — IEEE Trans. Comput., Vol. C-22. pp. 673–678.
[11] Helmberg G., Wagner P. and Veltkamp G. (1993): On Faddeev-Leverrier’s method for the computation of the characteristic polynomial of a matrix and of eigenvectors.—Lin. Alg. Applic., Vol. 185, pp. 219–223.
[12] Kaczorek T. (1989): Existence and uniqueness of solutions and Cayley-Hamilton theorem for a general singular model of 2-D systems. — Bull. Polish Acad. Sci. Techn. Sci., Vol. 37, No. 5-6, pp. 275–284.
[13] Kaczorek T. (1995a): An extension of the Cayley-Hamilton theorem for 2-D continuous-discrete linear systems. — Appl. Math. Comput. Sci., Vol. 4, No. 4, pp. 507–515.
[14] Kaczorek T. (1995b): Generalization of the Cayley–Hamilton theorem for nonsquare matrices. — Proc. Int. Conf. Fundamentals of Electrotechnics and Circuit Theory XVIIISPETO, Gliwice-Ustroń, Poland, pp. 77–83.
[15] Kaczorek T. (1995c): An extension of the Cayley-Hamilton theorem for nonsquare block matrices and computation of the left and right inverses of matrices. — Bull. Polish Acad. Sci. Techn. Sci., Vol. 43, No. 1, pp. 49–56.
[16] Kaczorek T. (1995d): An extension of the Cayley-Hamilton theorem for singular 2D linear systems with non-square matrices.— Bull. Polish Acad. Sci., Techn. Sci., Vol. 43, No. 1, pp. 39–48.
[17] Kaczorek T. (1998): An extension of the Cayley-Hamilton theorem for a standard pair of block matrices. — Appl. Math. Comput. Sci., Vol. 8, No. 3, pp. 511–516.
[18] Kaczorek T. (2005): Generalization of Cayley-Hamilton theorem for n-D polynomial matrices.—IEEE Trans. Automat. Contr., Vol. 50, No. 5, pp.671–674.
[19] Kitamoto T. (1999): Efficient computation of the characteristic polynomial of a polynomial matrix. — IEICE Trans. Fundament., Vol. E83-A, No.5, pp. 842–848.
[20] Lewis F.L. (1986): Further remarks on the Cayley-Hamilton theorem and Leverrier’s method for the matrix pencil (sE − A).—IEEE Trans. Automat. Contr., Vol. 31, No. 9, pp. 869–870.
[21] Mertzios B. and Christodoulou M. (1986): On the generalized Cayley-Hamilton theorem. — IEEE Trans. Automat. Contr., Vol. 31, No. 2, pp. 156–157.
[22] Paccagnella L. E. and Pierobon G. L. (1976): FFT calculation of a determinantal polynomial. — IEEE Trans. Automat. Contr., Vol. 21, No. 3, pp. 401–402.
[23] Schuster A. and Hippe P. (1992): Inversion of polynomial matrices by interpolation. — IEEE Trans. Automat. Contr., Vol. 37, No. 3, pp. 363–365.
[24] Theodorou N.J. (1989): M-dimensional Cayley-Hamilton theorem. — IEEE Trans. Automat. Contr., Vol. 34, No. 5, pp. 563–565.
[25] Tzekis P. and Karampetakis N. (2005): On the computation of the minimal polynomial of a two-variable polynomial matrix. — Proc. 4th Int. Workshop Multidimensional (nD) Systems, Wuppertal, Germany.
[26] Victoria J. (1982): A block Cayley-Hamilton theorem. — Bull. Math. Soc. Sci. Math. Roum., Vol. 26, No. 1, pp. 93–97.
[27] Vilfan B. (1973): Another proof of the two-dimensional Cayley–Hamilton theorem. — IEEE Trans. Comput., Vol. C-22, pp. 1140.
[28] Yu B. and Kitamoto T. (2000): The CHACM method for computing the characteristic polynomial of a polynomial matrix.—IEICE Trans. Fundament., E83-A, No.7, pp. 1405–1410.