Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2005_15_2_a8, author = {{\L}\k{e}ski, J. M. and Czoga{\l}a, T.}, title = {A {Fuzzy} {System} with \ensuremath{\varepsilon}-insensitive {Learning} of {Premises} and {Consequences} of if-then {Rules}}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {257--273}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a8/} }
TY - JOUR AU - Łęski, J. M. AU - Czogała, T. TI - A Fuzzy System with ε-insensitive Learning of Premises and Consequences of if-then Rules JO - International Journal of Applied Mathematics and Computer Science PY - 2005 SP - 257 EP - 273 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a8/ LA - en ID - IJAMCS_2005_15_2_a8 ER -
%0 Journal Article %A Łęski, J. M. %A Czogała, T. %T A Fuzzy System with ε-insensitive Learning of Premises and Consequences of if-then Rules %J International Journal of Applied Mathematics and Computer Science %D 2005 %P 257-273 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a8/ %G en %F IJAMCS_2005_15_2_a8
Łęski, J. M.; Czogała, T. A Fuzzy System with ε-insensitive Learning of Premises and Consequences of if-then Rules. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 2, pp. 257-273. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a8/
[1] Bezdek J.C. (1982): Pattern Recognition with Fuzzy Objective Function Algorithms. —New York: Plenum Press.
[2] Box G.E.P. and Jenkins G.M. (1976): Time Series Analysis. Forecasting and Control.— San Francisco: Holden-Day.
[3] Castellano G., Fanelli A.M. and Mencor C. (2004): An empirical risk functional to improve learning in a neuro-fuzzy classifier. — IEEE Trans. Sys. Man Cybern., Part B: Cybernetics, Vol. 34, No. 1, pp. 725–730.
[4] Chen J.-Q., Xi Y.-G. and Zhang Z.-J. (1998): A clustering algorithm for fuzzy model identification. — Fuzzy Sets Syst., Vol. 98, No. 2, pp. 319–329.
[5] Chen J.-H. and Chen C.-S. (2002): Fuzzy kernel perceptron. — IEEE Trans. Neural Netw., Vol. 13, No. 6, pp. 1364–1373.
[6] Chiang J.-H. and Hao P.-Y. (2003): A new kernel-based fuzzy clustering approach: support vector clustering with cell growing. — IEEE Trans. Fuzzy Syst., Vol. 11, No. 4, pp. 518–527.
[7] Czogała E. and Łęski J.M. (2000): Fuzzy and Neuro-Fuzzy Intelligent Systems. —Heidelberg: Physica-Verlag.
[8] Czogała E. and Łęski J.M. (2001): On equivalence of approximate reasoning results using different interpretations of fuzzy if-then rules. — Fuzzy Sets Syst., Vol. 117, No. 2, pp. 279–296.
[9] Ho Y.-C. and Kashyap R.L. (1965): An algorithm for linear inequalities and its applications. — IEEE Trans. Elec. Comp., Vol. 14, No. 5, pp. 683–688.
[10] Ho Y.-C. and Kashyap R.L. (1966): A class of iterative procedures for linear inequalities. — SIAM J. Contr., Vol. 4, No. 2, pp. 112–115.
[11] Hong D.H. and Hwang C. (2003): Support vector fuzzy regression machines. — Fuzzy Sets Syst., Vol. 138, No. 2, pp. 271–281.
[12] Jang J.-S.R., Sun C.-T. and Mizutani E. (1997): Neuro-fuzzy and Soft Computing. A Computational Approach to Learning and Machine Intelligence. — Upper Saddle River: Prentice-Hall.
[13] Jeng J.-T., Chuang C.-C. and Su S.-F. (2003): Support vector interval regression networks for interval regression analysis. — Fuzzy Sets Syst., Vol. 138, No. 2, pp. 283–300.
[14] Lin C.-F. and Wang S.-D. (2002): Fuzzy support vector machine. —IEEE Trans. Neural Netw., Vol. 13, No. 2, pp. 464–471.
[15] Łęski J.M. and Czogała E. (1999): A new artificial neural network based fuzzy inference system with moving consequents in if-then rules and its applications. — Fuzzy Sets Syst., Vol. 108, No. 3, pp. 289–297.
[16] Łęski J.M. (2001): An ε-insensitive approach to fuzzy clustering. — Int. J. App. Math. Comp. Sci., Vol. 11, No. 4, pp. 993–1007.
[17] Łęski J.M. (2001): Neuro-fuzzy modeling with ε-insensitive learning. — Methods of Artificial Intelligence in Mechanics and Mechanical Engineering, Gliwice, Poland, pp. 133–138.
[18] Łęski J.M. (2002a): ε-insensitive learning techniques for approximate reasoning systems (Invited Paper). — Int. J. Comp. Cognition, Vol. 1, No. 1, pp. 21–77.
[19] Łęski J.M. (2002b): Improving generalization ability of neurofuzzy system by ε-insensitive learning. — Int. J. Appl. Math. Comp. Sci., Vol. 12, No. 3, pp. 437–447.
[20] Łęski J.M. (2003a): Towards a robust fuzzy clustering.—Fuzzy Sets Syst., Vol. 137, No. 2, pp. 215–233.
[21] Łęski J.M. (2003b): Neuro-fuzzy system with learning tolerant to imprecision.—Fuzzy Sets Syst., Vol. 138, No. 2, pp. 427–439.
[22] Łęski J.M. (2004a): ε-insensitive fuzzy -regression models: Introduction to ε-insensitive fuzzy modeling. — IEEE Trans. Syst. Man Cybern., Part B: Cybernetics, Vol. 34, No. 1, pp. 4–15.
[23] Łęski J.M. (2004b): An ε-margin nonlinear classifier based on if-then rules. — IEEE Trans. Syst. Man Cybern., Part B: Cybernetics, Vol. 34, No. 1, pp. 68–76.
[24] Mendel J.M. (1983): Optimal Seismic Deconvolution. An Estimation-Based Approach. — New York: Academic Press.
[25] Pedrycz W. (1984): An identification algorithm in fuzzy relational systems. — Fuzzy Sets Syst., Vol. 13, No. 1, pp. 153–167.
[26] Rutkowska D. (2001): Neuro-Fuzzy Architectures and Hybrid Learning. — Heidelberg: Physica-Verlag.
[27] Rutkowski L. and Cpalka K. (2003): Flexible neuro-fuzzy systems. — IEEE Trans. Neural Netw., Vol. 14, No. 3, pp. 554–574.
[28] Setnes M. (2000): Supervised fuzzy clustering for rule extraction. — IEEE Trans. Fuzzy Syst., Vol. 8, No. 4, pp. 416–424.
[29] Sugeno M. and Yasukawa T. (1993): A fuzzy-logic-based approach to qualitative modeling. — IEEE Trans. Fuzzy Syst., Vol. 1, No. 1, pp. 7–31.
[30] Tong R.M. (1980): The evaluation of fuzzy models derived from experimental data. — Fuzzy Sets Syst., Vol. 4, No. 1, pp. 1–12.
[31] Vapnik V. (1995): The Nature of Statistical Learning Theory. — New York: Springer.
[32] Vapnik V. (1998): Statistical Learning Theory. — New York: Wiley.
[33] Vapnik V. (1999): An overview of statistical learning theory. — IEEE Trans. Neural Netw., Vol. 10, No. 5, pp. 988–999.
[34] Xie X.L. and Beni G. (1991): A validity measure for fuzzy clustering.— IEEE Trans. Pattern Anal. Mach. Intell., Vol. 13, No. 8, pp. 841–847.
[35] Xu C.W. and Lu Y.Z. (1987): Fuzzy model identification and self-learning for dynamic systems. — IEEE Trans. Syst., Man Cybern., Vol. 17, No. 3, pp. 190–197.
[36] Zadeh L. A. (1973): Outline of a new approach to the analysis of complex systems and decision processes.—IEEE Trans. Syst. Man Cybern., Vol. 3, No. 1, pp. 28–44.