Global Stability of Linearizing Control With a New Robust Nonlinear Observer of The Induction Motor
International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 2, pp. 235-243.

Voir la notice de l'article provenant de la source Library of Science

This paper mainly deals with the design of an advanced control law with an observer for a special class of nonlinear systems. We design an observer with a gain as a function of speed. We study the solution to the output feedback torque and rotor flux-tracking problem for an induction motor model given in the natural frame. We propose a new robust nonlinear observer and prove the global stability of the interlaced controller-observer system. The control algorithm is studied through simulations and applied in many configurations (various set points, flux and speed profiles and torque disturbances), and is shown to be very efficient.
Keywords: nonlinear observer, linearizing control, induction motor, global stability
Mots-clés : obserwatory nieliniowe, sterowanie liniowe, silnik indukcyjny, stabilność globalna
@article{IJAMCS_2005_15_2_a6,
     author = {Chenafa, M. and Mansouri, A. and Bouhenna, A. and Etien, E. and Belaidi, A. and Denai, M. A.},
     title = {Global {Stability} of {Linearizing} {Control} {With} a {New} {Robust} {Nonlinear} {Observer} of {The} {Induction} {Motor}},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {235--243},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a6/}
}
TY  - JOUR
AU  - Chenafa, M.
AU  - Mansouri, A.
AU  - Bouhenna, A.
AU  - Etien, E.
AU  - Belaidi, A.
AU  - Denai, M. A.
TI  - Global Stability of Linearizing Control With a New Robust Nonlinear Observer of The Induction Motor
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2005
SP  - 235
EP  - 243
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a6/
LA  - en
ID  - IJAMCS_2005_15_2_a6
ER  - 
%0 Journal Article
%A Chenafa, M.
%A Mansouri, A.
%A Bouhenna, A.
%A Etien, E.
%A Belaidi, A.
%A Denai, M. A.
%T Global Stability of Linearizing Control With a New Robust Nonlinear Observer of The Induction Motor
%J International Journal of Applied Mathematics and Computer Science
%D 2005
%P 235-243
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a6/
%G en
%F IJAMCS_2005_15_2_a6
Chenafa, M.; Mansouri, A.; Bouhenna, A.; Etien, E.; Belaidi, A.; Denai, M. A. Global Stability of Linearizing Control With a New Robust Nonlinear Observer of The Induction Motor. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 2, pp. 235-243. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a6/

[1] Bodson M. and Chiasson J. (1992): A systematic approach for selecting optimal flux references in induction motors. — Proc. IEEE IAS Annual Meeting, Houston, TX, USA, pp. 531–537.

[2] Busawon K., Farza M. and Hammouri H. (1998): Observer designs for a special class of nonlinear systems. — Int. J. Contr., Vol. 71, No. 3, pp. 405–418.

[3] Cauët S. (2001): Contribution à l’analyse et la synthèse de lois de commande robustes pour la machine asynchrone. — Ph.D. thesis, Université de Poitiers, Ecole Supérieure d’Ingénieurs de Poitiers, Ecole Doctorale des Sciences pour l’Ingénieur, France.

[4] Chiason J. (1997): A new approach to dynamic feedback linearization control of an induction motor. — IEEE Trans. Automat. Contr., Vol. 43, No. 3, pp. 391–397.

[5] De Luca A. and Ulivi G. (1989): Design of an exact non-linear controller for induction motors. — IEEE Trans. Automat. Contr., Vol. 34, No. 12, pp. 1304–1307.

[6] Gauthier J.P. and Bornard G. (1981): Observability for any u(t) of a class of nonlinear systems. — IEEE Trans. Automat. Contr., Vol. 26, No. 4, pp. 922–926.

[7] Grellet G. and Clerc G. (1996): Actionneurs électriques. Principes. Modèles. Commandes. — Paris: Eyrolles.

[8] Isidori A. (1989): Non-linear Control Systems. — Berlin: Springer.

[9] Lubineau D., Dion J.M., Dugar L. and Roye D. (1999): La synthèse d’un contrôleur non linéaire avancé pour les moteurs à induction et la validation expérimentale sur référence industrielle. — Laboratoire d’Automatique de Grenoble, CNRS, INGP, UJF, France.

[10] Mansouri A., Chenafa M., Bouhenna A. and Etien E. (2004): Powerful nonlinear observer associated with the fieldoriented control of the induction motor. — Int. J. Appl. Math. Comput. Sci., Vol. 14, No. 2, pp. 209–220.

[11] Marino R., Peresada S. and Valigi P. (1993): Adaptive inputoutput linearizing control of induction motors. — IEEE Trans. Automat. Contr., Vol. 38, No. 2, pp. 208–221.

[12] Van Raumer T. (1994): Commande non-linéaire d’une machine asynchrone. — Ph.D. thesis, Laboratoire d’Electrotechnique et d’Electronique Industrielle de Toulouse, France.

[13] Verghese G.C. and Sanders S.R. (1988): Observers for flux estimation in induction machines. — IEEE Trans. Ind. Electron., Vol. 35, No. 1, pp. 85–94.