Extension of The Cayley-Hamilton Theorem to Continuous-time Linear Systems With Delays
International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 2, pp. 231-234.

Voir la notice de l'article provenant de la source Library of Science

The classical Cayley-Hamilton theorem is extended to continuous-time linear systems with delays. The matrices A_0, A_1, dots, A_h in R^n times n of the system with h delays dot xleft(t right) = A_0 xleft(t right) + sum_i = 1^h A_i xleft( t - hi right) + Buleft( t right) satisfy nh + 1 algebraic matrix equations with coefficients of the characteristic polynomial pleft( s,wright) = det left[ I_n s - A_0 - A_1 w - cdots - A_h w^h right], w = e^- hs.
Keywords: Cayley-Hamilton theorem, continuous time, linear system, delay, extension
Mots-clés : twierdzenie Cayleya-Hamiltona, czas ciągły, system liniowy, opóźnienie, rozszerzenie
@article{IJAMCS_2005_15_2_a5,
     author = {Kaczorek, T.},
     title = {Extension of {The} {Cayley-Hamilton} {Theorem} to {Continuous-time} {Linear} {Systems} {With} {Delays}},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {231--234},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a5/}
}
TY  - JOUR
AU  - Kaczorek, T.
TI  - Extension of The Cayley-Hamilton Theorem to Continuous-time Linear Systems With Delays
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2005
SP  - 231
EP  - 234
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a5/
LA  - en
ID  - IJAMCS_2005_15_2_a5
ER  - 
%0 Journal Article
%A Kaczorek, T.
%T Extension of The Cayley-Hamilton Theorem to Continuous-time Linear Systems With Delays
%J International Journal of Applied Mathematics and Computer Science
%D 2005
%P 231-234
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a5/
%G en
%F IJAMCS_2005_15_2_a5
Kaczorek, T. Extension of The Cayley-Hamilton Theorem to Continuous-time Linear Systems With Delays. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 2, pp. 231-234. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a5/

[1] Busłowicz M. and Kaczorek T. (2004): Reachability and minimum energy control of positive linear discrete-time systems with one delay. — Proc. 12-th Mediterranean Conf. Control and Automation, Kasadasi, Turkey: Izmir (on CDROM).

[2] Chang F.R. and Chan C.N. (1992): The generalized Cayley-Hamilton theorem for standard pencis. — Syst. Contr. Lett., Vol. 18, No. 192, pp. 179–182.

[3] Gałkowski K. (1996): Matrix description of multivariable polynomials. — Lin. Alg. and Its Applic., Vol. 234, No. 2, pp. 209–226.

[4] Gantmacher F.R. (1974): The Theory of Matrices. — Vol. 2. — Chelsea: New York.

[5] Kaczorek T. (1992/1993): Linear Control Systems.—Vols. I, II, Tauton: Research Studies Press.

[6] Kaczorek T. (1994): Extensions of the Cayley-Hamilton theorem for 2D continuous-discrete linear systems. — Appl. Math. Comput. Sci., Vol. 4, No. 4, pp. 507–515.

[7] Kaczorek T. (1995a): An existence of the Cayley-Hamilton theorem for singular 2D linear systems with non-square matrices.— Bull. Pol. Acad. Techn. Sci., Vol. 43, No. 1, pp. 39–48.

[8] Kaczorek T. (1995b): An existence of the Cayley-Hamilton theorem for nonsquare block matrices and computation of the left and right inverses of matrices. — Bull. Pol. Acad. Techn. Sci., Vol. 43, No. 1, pp. 49–56.

[9] Kaczorek T. (1995c): Generalization of the Cayley-Hamilton theorem for nonsquare matrices. — Proc. Int. Conf. Fundamentals of Electrotechnics and Circuit Theory XVIIISPETO, Ustron-Gliwice, Poland, pp. 77–83.

[10] Kaczorek T. (1998): An extension of the Cayley-Hamilton theorem for a standard pair of block matrices. — Appl. Math. Comput. Sci., Vol. 8, No. 3, pp. 511–516.

[11] Kaczorek T. (2005): Generalization of Cayley-Hamilton theorem for n-D polynomial matrices. — IEEE Trans. Automat. Contr., No. 5, (in press).

[12] Lancaster P. (1969): Theory of Matrices. — New York, Academic, Press.

[13] Lewis F.L. (1982): Cayley-Hamilton theorem and Fadeev’s method for the matrix pencil. [sE-A] — Proc. 22nd IEEE Conf. Decision and Control, San Diego, USA, pp. 1282–1288.

[14] Lewis F.L. (1986): Further remarks on the Cayley-Hamilton theorem and Fadeev’s method for the matrix pencil [sE-A]. — IEEE Trans. Automat. Contr., Vol. 31, No. 7, pp. 869–870.

[15] Mertizios B.G and Christodoulous M.A. (1986): On the generalized Cayley-Hamilton theorem.—IEEE Trans. Automat. Contr., Vol. 31, No. 1, pp. 156–157.

[16] Smart N.M. and Barnett S. (1989): The algebra of matrices in n–dimensional systems.—Math. Contr. Inf., Vol. 6, No. 1, pp. 121–133.

[17] Theodoru N.J. (1989): M-dimensional Cayley-Hamilton theorem. — IEEE Trans. Automat. Contr., Vol. AC-34, No. 5, pp. 563-565.

[18] Victoria J. (1982): A block Cayley-Hamilton theorem. — Bull. Math. Soc. Sci. Math. Roum, Vol. 26, No. 1, pp. 93–97.