Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2005_15_2_a5, author = {Kaczorek, T.}, title = {Extension of {The} {Cayley-Hamilton} {Theorem} to {Continuous-time} {Linear} {Systems} {With} {Delays}}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {231--234}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a5/} }
TY - JOUR AU - Kaczorek, T. TI - Extension of The Cayley-Hamilton Theorem to Continuous-time Linear Systems With Delays JO - International Journal of Applied Mathematics and Computer Science PY - 2005 SP - 231 EP - 234 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a5/ LA - en ID - IJAMCS_2005_15_2_a5 ER -
%0 Journal Article %A Kaczorek, T. %T Extension of The Cayley-Hamilton Theorem to Continuous-time Linear Systems With Delays %J International Journal of Applied Mathematics and Computer Science %D 2005 %P 231-234 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a5/ %G en %F IJAMCS_2005_15_2_a5
Kaczorek, T. Extension of The Cayley-Hamilton Theorem to Continuous-time Linear Systems With Delays. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 2, pp. 231-234. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a5/
[1] Busłowicz M. and Kaczorek T. (2004): Reachability and minimum energy control of positive linear discrete-time systems with one delay. — Proc. 12-th Mediterranean Conf. Control and Automation, Kasadasi, Turkey: Izmir (on CDROM).
[2] Chang F.R. and Chan C.N. (1992): The generalized Cayley-Hamilton theorem for standard pencis. — Syst. Contr. Lett., Vol. 18, No. 192, pp. 179–182.
[3] Gałkowski K. (1996): Matrix description of multivariable polynomials. — Lin. Alg. and Its Applic., Vol. 234, No. 2, pp. 209–226.
[4] Gantmacher F.R. (1974): The Theory of Matrices. — Vol. 2. — Chelsea: New York.
[5] Kaczorek T. (1992/1993): Linear Control Systems.—Vols. I, II, Tauton: Research Studies Press.
[6] Kaczorek T. (1994): Extensions of the Cayley-Hamilton theorem for 2D continuous-discrete linear systems. — Appl. Math. Comput. Sci., Vol. 4, No. 4, pp. 507–515.
[7] Kaczorek T. (1995a): An existence of the Cayley-Hamilton theorem for singular 2D linear systems with non-square matrices.— Bull. Pol. Acad. Techn. Sci., Vol. 43, No. 1, pp. 39–48.
[8] Kaczorek T. (1995b): An existence of the Cayley-Hamilton theorem for nonsquare block matrices and computation of the left and right inverses of matrices. — Bull. Pol. Acad. Techn. Sci., Vol. 43, No. 1, pp. 49–56.
[9] Kaczorek T. (1995c): Generalization of the Cayley-Hamilton theorem for nonsquare matrices. — Proc. Int. Conf. Fundamentals of Electrotechnics and Circuit Theory XVIIISPETO, Ustron-Gliwice, Poland, pp. 77–83.
[10] Kaczorek T. (1998): An extension of the Cayley-Hamilton theorem for a standard pair of block matrices. — Appl. Math. Comput. Sci., Vol. 8, No. 3, pp. 511–516.
[11] Kaczorek T. (2005): Generalization of Cayley-Hamilton theorem for n-D polynomial matrices. — IEEE Trans. Automat. Contr., No. 5, (in press).
[12] Lancaster P. (1969): Theory of Matrices. — New York, Academic, Press.
[13] Lewis F.L. (1982): Cayley-Hamilton theorem and Fadeev’s method for the matrix pencil. [sE-A] — Proc. 22nd IEEE Conf. Decision and Control, San Diego, USA, pp. 1282–1288.
[14] Lewis F.L. (1986): Further remarks on the Cayley-Hamilton theorem and Fadeev’s method for the matrix pencil [sE-A]. — IEEE Trans. Automat. Contr., Vol. 31, No. 7, pp. 869–870.
[15] Mertizios B.G and Christodoulous M.A. (1986): On the generalized Cayley-Hamilton theorem.—IEEE Trans. Automat. Contr., Vol. 31, No. 1, pp. 156–157.
[16] Smart N.M. and Barnett S. (1989): The algebra of matrices in n–dimensional systems.—Math. Contr. Inf., Vol. 6, No. 1, pp. 121–133.
[17] Theodoru N.J. (1989): M-dimensional Cayley-Hamilton theorem. — IEEE Trans. Automat. Contr., Vol. AC-34, No. 5, pp. 563-565.
[18] Victoria J. (1982): A block Cayley-Hamilton theorem. — Bull. Math. Soc. Sci. Math. Roum, Vol. 26, No. 1, pp. 93–97.