Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2005_15_2_a2, author = {Angelov, T. A. and Liolios, A. A.}, title = {On {The} {Two-Step} {Iterative} {Method} of {Solving} {Frictional} {Contact} {Problems} in {Elasticity}}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {197--203}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a2/} }
TY - JOUR AU - Angelov, T. A. AU - Liolios, A. A. TI - On The Two-Step Iterative Method of Solving Frictional Contact Problems in Elasticity JO - International Journal of Applied Mathematics and Computer Science PY - 2005 SP - 197 EP - 203 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a2/ LA - en ID - IJAMCS_2005_15_2_a2 ER -
%0 Journal Article %A Angelov, T. A. %A Liolios, A. A. %T On The Two-Step Iterative Method of Solving Frictional Contact Problems in Elasticity %J International Journal of Applied Mathematics and Computer Science %D 2005 %P 197-203 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a2/ %G en %F IJAMCS_2005_15_2_a2
Angelov, T. A.; Liolios, A. A. On The Two-Step Iterative Method of Solving Frictional Contact Problems in Elasticity. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 2, pp. 197-203. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a2/
[1] Andersson L.-E. and Klarbring A. (2001): A review of the theory of static and quasi-static frictional contact problems in elasticity. — Phil. Trans. Roy. Soc. London, Vol. A 359, No. 1789, pp. 2519–2539.
[2] Angelov T.A. and Liolios A.A. (2004): An iterative solution procedure for Winkler-type contact problems with friction. —Z. Angew. Math. Mech., Vol. 84, No. 2, pp. 136–143.
[3] Čapǎtinǎ A.R. and Cocu M. (1991): Internal approximation of quasi-variational inequalities. — Num. Math., Vol. 59, No. 4, pp. 385–398.
[4] Cocu M. (1984): Existence of solutions of Signorini problems with friction.—Int. J. Eng. Sci., Vol. 22, No. 10, pp. 567–575.
[5] Demkowicz L. and Oden J.T. (1982): On some existence and uniqueness results in contact problems with nonlocal friction. —Nonlin. Anal., Vol. TMA 6, pp. 1075–1093.
[6] Duvaut G. and Lions J.-L. (1976): Inequalities in Mechanics and Physics. — Berlin: Springer.
[7] Glowinski R. (1984): Numerical Methods for Nonlinear Variational Problems.— New York: Springer.
[8] Hlavaček I., Haslinger J., Nečas J. and Lovišek J. (1988): Solution of Variational Inequalities in Mechanics. — New York: Springer.
[9] Kikuchi N. and Oden J.T. (1988): Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. — Philadelphia: SIAM.
[10] Klarbring A., Mikelič A. and Shillor M. (1989): On friction problems with normal compliance. — Nonlin. Anal., Vol. TMA 13, No. 8, pp. 935–955.
[11] Lee C.Y. and Oden J.T. (1993a): Theory and approximation of quasistatic frictional contact problems. — Comp. Math. Appl. Mech. Eng., Vol. 106, No. 3, pp. 407–429.
[12] Lee C.Y. and Oden J.T. (1993b): A priori error estimation of hpfinite element approximations of frictional contact problems with normal compliance. — Int. J. Eng. Sci., Vol. 31, No. 6, pp. 927–952.
[13] Nečas J., Jarušek J. and Haslinger J. (1980): On the solution of the variational inequality to the Signorini problem with small friction. — Bull. Unione Math. Italiana, Vol. 17-B(5), pp. 796–811.
[14] Oden J.T. and Carey G.F. (1984): Finite Elements: Special Problems in Solid Mechanics, Vol. 5,—Englewood Cliffs, N.J.: Prentice-Hall.
[15] Panagiotopoulos P.D. (1975): A Nonlinear Programming Approach to the Unilateral Contact and Friction Boundary Value Problem in the Theory of Elasticity.— Ing. Archiv., Vol. 44, No. 6, pp. 421–432.
[16] Panagiotopoulos P.D. (1985): Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions. —Boston: Birkhäuser.
[17] Rabier P.J. and Oden J.T. (1987): Solution to Signorini-like contact problems through interface models. I. Preliminaries and formulation of a variational equality. — Nonlin. Anal., Vol. TMA 11, No. 12, pp. 1325–1350.
[18] Rabier P.J. and Oden J.T. (1988): Solution to Signorini-like contact problems through interface models. II. Existence and uniqueness theorems. —Nonlin. Anal., Vol. TMA 12, No. 1, pp. 1–17.