On The Two-Step Iterative Method of Solving Frictional Contact Problems in Elasticity
International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 2, pp. 197-203.

Voir la notice de l'article provenant de la source Library of Science

A class of contact problems with friction in elastostatics is considered. Under a certain restriction on the friction coefficient, the convergence of the two-step iterative method proposed by P.D. Panagiotopoulos is proved. Its applicability is discussed and compared with two other iterative methods, and the computed results are presented.
Keywords: contact problem, friction coefficient, iterative method
Mots-clés : zagadnienie kontaktowe, współczynnik tarcia, metoda iteracyjna
@article{IJAMCS_2005_15_2_a2,
     author = {Angelov, T. A. and Liolios, A. A.},
     title = {On {The} {Two-Step} {Iterative} {Method} of {Solving} {Frictional} {Contact} {Problems} in {Elasticity}},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {197--203},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a2/}
}
TY  - JOUR
AU  - Angelov, T. A.
AU  - Liolios, A. A.
TI  - On The Two-Step Iterative Method of Solving Frictional Contact Problems in Elasticity
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2005
SP  - 197
EP  - 203
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a2/
LA  - en
ID  - IJAMCS_2005_15_2_a2
ER  - 
%0 Journal Article
%A Angelov, T. A.
%A Liolios, A. A.
%T On The Two-Step Iterative Method of Solving Frictional Contact Problems in Elasticity
%J International Journal of Applied Mathematics and Computer Science
%D 2005
%P 197-203
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a2/
%G en
%F IJAMCS_2005_15_2_a2
Angelov, T. A.; Liolios, A. A. On The Two-Step Iterative Method of Solving Frictional Contact Problems in Elasticity. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 2, pp. 197-203. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a2/

[1] Andersson L.-E. and Klarbring A. (2001): A review of the theory of static and quasi-static frictional contact problems in elasticity. — Phil. Trans. Roy. Soc. London, Vol. A 359, No. 1789, pp. 2519–2539.

[2] Angelov T.A. and Liolios A.A. (2004): An iterative solution procedure for Winkler-type contact problems with friction. —Z. Angew. Math. Mech., Vol. 84, No. 2, pp. 136–143.

[3] Čapǎtinǎ A.R. and Cocu M. (1991): Internal approximation of quasi-variational inequalities. — Num. Math., Vol. 59, No. 4, pp. 385–398.

[4] Cocu M. (1984): Existence of solutions of Signorini problems with friction.—Int. J. Eng. Sci., Vol. 22, No. 10, pp. 567–575.

[5] Demkowicz L. and Oden J.T. (1982): On some existence and uniqueness results in contact problems with nonlocal friction. —Nonlin. Anal., Vol. TMA 6, pp. 1075–1093.

[6] Duvaut G. and Lions J.-L. (1976): Inequalities in Mechanics and Physics. — Berlin: Springer.

[7] Glowinski R. (1984): Numerical Methods for Nonlinear Variational Problems.— New York: Springer.

[8] Hlavaček I., Haslinger J., Nečas J. and Lovišek J. (1988): Solution of Variational Inequalities in Mechanics. — New York: Springer.

[9] Kikuchi N. and Oden J.T. (1988): Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. — Philadelphia: SIAM.

[10] Klarbring A., Mikelič A. and Shillor M. (1989): On friction problems with normal compliance. — Nonlin. Anal., Vol. TMA 13, No. 8, pp. 935–955.

[11] Lee C.Y. and Oden J.T. (1993a): Theory and approximation of quasistatic frictional contact problems. — Comp. Math. Appl. Mech. Eng., Vol. 106, No. 3, pp. 407–429.

[12] Lee C.Y. and Oden J.T. (1993b): A priori error estimation of hpfinite element approximations of frictional contact problems with normal compliance. — Int. J. Eng. Sci., Vol. 31, No. 6, pp. 927–952.

[13] Nečas J., Jarušek J. and Haslinger J. (1980): On the solution of the variational inequality to the Signorini problem with small friction. — Bull. Unione Math. Italiana, Vol. 17-B(5), pp. 796–811.

[14] Oden J.T. and Carey G.F. (1984): Finite Elements: Special Problems in Solid Mechanics, Vol. 5,—Englewood Cliffs, N.J.: Prentice-Hall.

[15] Panagiotopoulos P.D. (1975): A Nonlinear Programming Approach to the Unilateral Contact and Friction Boundary Value Problem in the Theory of Elasticity.— Ing. Archiv., Vol. 44, No. 6, pp. 421–432.

[16] Panagiotopoulos P.D. (1985): Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions. —Boston: Birkhäuser.

[17] Rabier P.J. and Oden J.T. (1987): Solution to Signorini-like contact problems through interface models. I. Preliminaries and formulation of a variational equality. — Nonlin. Anal., Vol. TMA 11, No. 12, pp. 1325–1350.

[18] Rabier P.J. and Oden J.T. (1988): Solution to Signorini-like contact problems through interface models. II. Existence and uniqueness theorems. —Nonlin. Anal., Vol. TMA 12, No. 1, pp. 1–17.