Strict Maximum Separability of Two Finite Sets: An Algorithmic Approach
International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 2, pp. 295-304.

Voir la notice de l'article provenant de la source Library of Science

The paper presents a recursive algorithm for the investigation of a strict, linear separation in the Euclidean space. In the case when sets are linearly separable, it allows us to determine the coefficients of the hyperplanes. An example of using this algorithm as well as its drawbacks are shown. Then the algorithm of determining an optimal separation (in the sense of maximizing the distance between the two sets) is presented.
Keywords: binary classifiers, recursive methods, optimal separability
Mots-clés : klasyfikator binarny, metoda rekurencyjna, rozdzielność optymalna
@article{IJAMCS_2005_15_2_a11,
     author = {Cendrowska, D.},
     title = {Strict {Maximum} {Separability} of {Two} {Finite} {Sets:} {An} {Algorithmic} {Approach}},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {295--304},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a11/}
}
TY  - JOUR
AU  - Cendrowska, D.
TI  - Strict Maximum Separability of Two Finite Sets: An Algorithmic Approach
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2005
SP  - 295
EP  - 304
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a11/
LA  - en
ID  - IJAMCS_2005_15_2_a11
ER  - 
%0 Journal Article
%A Cendrowska, D.
%T Strict Maximum Separability of Two Finite Sets: An Algorithmic Approach
%J International Journal of Applied Mathematics and Computer Science
%D 2005
%P 295-304
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a11/
%G en
%F IJAMCS_2005_15_2_a11
Cendrowska, D. Strict Maximum Separability of Two Finite Sets: An Algorithmic Approach. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 2, pp. 295-304. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a11/

[1] Cristianini N. and Shawe-Taylor J. (2000): An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. —Cambridge: Cambridge University Press.

[2] Duda R.O., Hart P.E. and Stork D.G. (1995): Pattern Classification. —New York: Wiley.

[3] Franc V. and Hlaváč V. (2003): An iterative algorithm learning the maximal margin classifier.—Pattern Recogn., Vol. 36, No. 9, pp. 1985–1996.

[4] Jankowski N. (2003): Ontogenic Neural Networks. — Warsaw: EXIT, (in Polish).

[5] Jóźwik A. (1975): Method of investigaton of separability of two finite sets in n-dimensional space. — Scientific Works of the Institute of Organization and Manegement, Series: Applied Cybernetics and Computer Science, Vol. 18, (in Polish).

[6] Jóźwik A. (1983): A recursive method for the investigation of the linear separability of two sets.—Pattern Recogn., Vol. 16, No. 4, pp. 429–431.

[7] Jóźwik A. (1998): Algorithm of investigaton of separability of two sets, prospects of reusing this algorithm to construct the binary classifier. — Proc. 6-th Conf. Networks and Information Systems—Theory, Projects and Applications, Łódź, Poland, pp. 311–316, (in Polish).

[8] Kozinec B.N. (1973): Recurrent algorithm separating convex hulls of two sets, In: Learning Algorithms in Pattern Recognition (V.N. Vapnik, Ed.). — Moscow: Soviet Radio, pp. 43–50, (in Russian).

[9] Mangasarian O.L. (2000): Generalized Support Vector Machines, Advances in Large Margin classifiers, pp. 135–146, MIT Press, available at ftp: //ftp.cs.wisc.edu/math-prog/tech-reports/98-14.ps.

[10] Vapnik V.N. (2000): The Nature of Statistical Learning Theory. — New York: Springer.