Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2005_15_2_a10, author = {Toth, L. and Kocsor, A. and Csirik, J.}, title = {On {Naive} {Bayes} in {Speech} {Recognition}}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {287--294}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a10/} }
TY - JOUR AU - Toth, L. AU - Kocsor, A. AU - Csirik, J. TI - On Naive Bayes in Speech Recognition JO - International Journal of Applied Mathematics and Computer Science PY - 2005 SP - 287 EP - 294 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a10/ LA - en ID - IJAMCS_2005_15_2_a10 ER -
Toth, L.; Kocsor, A.; Csirik, J. On Naive Bayes in Speech Recognition. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 2, pp. 287-294. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a10/
[1] Clarkson P. and Moreno P.J. (1999): On the use of support vector machines for phonetic classification. — Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Phoenix, AZ, pp. 585–588.
[2] Domingos P. and Pazzani M. (1997): On the optimality of the simple Bayesian classifier under zero-one loss.—Machine Learn., Vol. 29, No. 2–3, pp. 103-130.
[3] Glass J.R. (1996): A probabilistic framework for feature-based speech recognition. — Proc. 4-th Int. Conf. Spoken Language Processing, Philadelphia, PA, pp. 2277–2280.
[4] Hand D.J. and Yu K. (2001): Idiot’s Bayes—Not so stupid after all? — Int. Stat. Rev., Vol. 69, No. 3, pp. 385–398.
[5] Holmes W.J. and Russel M.J. (1999): Probabilistic-trajectory Segmental HMMs, — Comput. Speech Lang., Vol. 13, No. 1, pp. 3–37.
[6] Huang X.D., Acero A. and Hon H-W. (2001): Spoken Language Processing. —New York: Prentice Hall.
[7] Lee K.-F. and Hon H.-W. (1989): Speaker-independent phone recognition using hidden Markov models. — IEEE Trans. Acoust. Speech Signal Process., Vol. 37, No. 11, pp. 1641–1648.
[8] Ostendorf M., Digalakis V. and Kimball O.A. (1996): From HMMs to segment models: A unified view of stochastic modeling for speech recognition. — IEEE Trans. Acoust. Speech Signal Process., Vol. 4, No. 5, pp. 360–378.
[9] Tóth L., Kocsor A. and Kovács K. (2000): A discriminative segmental speech model and its application to hungarian number recognition. — Proc. 3rd Workshop Text, Speech, Dialogue, Brno, Czech Republic, pp. 307–313.
[10] Rish I., Hellerstein J. and Thathachar J. (2000): An analysis of data characteristics that affect naive Bayes performance. — IBM Technical Report RC1993.
[11] Tax D.M.J., van Breukelen M., Duin R.P.W. and Kittler J. (2000): Combining multiple classifiers by averaging or by multiplying?.—Pattern Recogn., Vol. 33, No. 9, pp. 1475–1485.
[12] Van Horn K.S. (2001): A maximum-entropy solution to the frame-dependency problem in speech recognition.— Tech. Rep., Dept. Computer Science, North Dakota State Univ.
[13] Verhasselt J., Illina I., Martens J.-P., Gong Y., Haton J.-P. (1998): Assessing the importance of the segmentation probability in segment-based speech recognition. — Speech Commun., Vol. 24, No. 1, pp. 51–72.
[14] Woodland P.C. and Povey D. (2000): Large scale discriminative training for speech recognition.—Proc. ISCA ITRWASR 2000, France: Paris, pp. 7–16.
[15] Young S. et al. (2004): The HMM Toolkit (HTK) (software and manual). —Available at http://htk.eng.cam.ac.uk/.