A Method for Constructing ε-value Functions for The Bolza Problem of Optimal Control
International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 2, pp. 177-186.

Voir la notice de l'article provenant de la source Library of Science

The problem considered is that of approximate minimisation of the Bolza problem of optimal control. Starting from Bellman's method of dynamic programming, we define the ε-value function to be an approximation to the value function being a solution to the Hamilton-Jacobi equation. The paper shows an approach that can be used to construct an algorithm for calculating the values of an ε-value function at given points, thus approximating the respective values of the value function.
Keywords: nonlinear optimization, Bolza problem, optimal control, Hamilton-Jacobi equation, dynamic programming, value function, approximate minimum
Mots-clés : optymalizacja nieliniowa, sterowanie optymalne, równanie Hamiltona-Jacobiego, programowanie dynamiczne, wartość funkcji
@article{IJAMCS_2005_15_2_a0,
     author = {Pustelnik, J.},
     title = {A {Method} for {Constructing} \ensuremath{\varepsilon}-value {Functions} for {The} {Bolza} {Problem} of {Optimal} {Control}},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {177--186},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a0/}
}
TY  - JOUR
AU  - Pustelnik, J.
TI  - A Method for Constructing ε-value Functions for The Bolza Problem of Optimal Control
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2005
SP  - 177
EP  - 186
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a0/
LA  - en
ID  - IJAMCS_2005_15_2_a0
ER  - 
%0 Journal Article
%A Pustelnik, J.
%T A Method for Constructing ε-value Functions for The Bolza Problem of Optimal Control
%J International Journal of Applied Mathematics and Computer Science
%D 2005
%P 177-186
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a0/
%G en
%F IJAMCS_2005_15_2_a0
Pustelnik, J. A Method for Constructing ε-value Functions for The Bolza Problem of Optimal Control. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 2, pp. 177-186. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a0/

[1] Adams R.A. (1975): Sobolev spaces. — New York: Academic Press.

[2] Bryson S. and Levy D. (2001): Central schemes for multidimensional Hamilton-Jacobi Equations.—NASA Techn. Rep., NAS-01-014.

[3] Cesari L. (1983): Optimization – Theory and Applications. —New York: Springer.

[4] Fleming W.H. and Rishel R.W. (1975): Deterministic and Stochastic Optimal Control. —New York: Springer.

[5] Jacewicz E. (2001): An algorithm for construction of ε-value functions for the Bolza control problem. — Int. J. Appl. Math. Comput. Sci., Vol. 11, No. 2, pp. 391–428.

[6] Karlsen K.H. and Risebro N.H. (2002): Unconditionally stable methods for Hamilton-Jacobi equations. —J. Comput. Phys., Vol. 180, No. 2, pp. 710–735

[7] Kurganov A. and Tadmor E. (2000): New high-resolution semidiscrete central schemes for Hamilton–Jacobi equations. — J. Comput. Phys., Vol. 160, No. 2, pp. 720–742.

[8] Szpiro A. and Dupuis P. (2002): Second order numerical methods for first order Hamilton-Jacobi equations. — SIAM J. Numer. Anal., Vol. 40, No. 3, pp. 1136–1183.

[9] Tang H.Z., Tang T. and Zhang P. (2003): An adaptive mesh redistribution method for nonlinear Hamilton–Jacobi equations in two- and three-dimensions. — J. Comput. Phys., Vol. 188, No. 2, pp. 543–572.