Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2005_15_2_a0, author = {Pustelnik, J.}, title = {A {Method} for {Constructing} \ensuremath{\varepsilon}-value {Functions} for {The} {Bolza} {Problem} of {Optimal} {Control}}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {177--186}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a0/} }
TY - JOUR AU - Pustelnik, J. TI - A Method for Constructing ε-value Functions for The Bolza Problem of Optimal Control JO - International Journal of Applied Mathematics and Computer Science PY - 2005 SP - 177 EP - 186 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a0/ LA - en ID - IJAMCS_2005_15_2_a0 ER -
%0 Journal Article %A Pustelnik, J. %T A Method for Constructing ε-value Functions for The Bolza Problem of Optimal Control %J International Journal of Applied Mathematics and Computer Science %D 2005 %P 177-186 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a0/ %G en %F IJAMCS_2005_15_2_a0
Pustelnik, J. A Method for Constructing ε-value Functions for The Bolza Problem of Optimal Control. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 2, pp. 177-186. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a0/
[1] Adams R.A. (1975): Sobolev spaces. — New York: Academic Press.
[2] Bryson S. and Levy D. (2001): Central schemes for multidimensional Hamilton-Jacobi Equations.—NASA Techn. Rep., NAS-01-014.
[3] Cesari L. (1983): Optimization – Theory and Applications. —New York: Springer.
[4] Fleming W.H. and Rishel R.W. (1975): Deterministic and Stochastic Optimal Control. —New York: Springer.
[5] Jacewicz E. (2001): An algorithm for construction of ε-value functions for the Bolza control problem. — Int. J. Appl. Math. Comput. Sci., Vol. 11, No. 2, pp. 391–428.
[6] Karlsen K.H. and Risebro N.H. (2002): Unconditionally stable methods for Hamilton-Jacobi equations. —J. Comput. Phys., Vol. 180, No. 2, pp. 710–735
[7] Kurganov A. and Tadmor E. (2000): New high-resolution semidiscrete central schemes for Hamilton–Jacobi equations. — J. Comput. Phys., Vol. 160, No. 2, pp. 720–742.
[8] Szpiro A. and Dupuis P. (2002): Second order numerical methods for first order Hamilton-Jacobi equations. — SIAM J. Numer. Anal., Vol. 40, No. 3, pp. 1136–1183.
[9] Tang H.Z., Tang T. and Zhang P. (2003): An adaptive mesh redistribution method for nonlinear Hamilton–Jacobi equations in two- and three-dimensions. — J. Comput. Phys., Vol. 188, No. 2, pp. 543–572.