Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2005_15_1_a9, author = {Piegat, A.}, title = {A {New} {Definition} of the {Fuzzy} {Set}}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {125--140}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a9/} }
Piegat, A. A New Definition of the Fuzzy Set. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 1, pp. 125-140. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a9/
[1] Bezdek J. (1993): Editorial, fuzzy models — What are they, and why?. — IEEE Trans. Fuzzy Syst., Vol. 1, No. 1, pp. 1–6.
[2] Driankov D., Hellendorn H. and Reinfrank M. (1993): An Introduction to Fuzzy Control. — Berlin: Springer.
[3] Dubois D. and Prade H. (1988): Possibility Theory. — New York: Plenum Press.
[4] Dubois D. and Prade H. (1996): An introduction to fuzzy systems. —Int. J. Appl. Math. Comput. Sci., Vol. 6, No. 3, pp. 485–503.
[5] Dubois D. and Prade H. (1997): The three semantics of fuzzy sets.—Fuzzy Sets Syst., Vol. 90, No. 2, pp.141–150.
[6] Kaufmann A. and Gupta M.M. (1991): Introduction to Fuzzy Arithmetic.—New York: Van Nostrand Reinhold.
[7] Klir G.J. (1997): Fuzzy arithmetic with requisite constraints. — Fuzzy Sets Syst., Vol. 91, pp. 165–175.
[8] Klir G.J. and Folger T.A. (1988): Fuzzy Sets, Uncertainty, and Information.—Englewood Cliffs: Prentice Hall.
[9] Kosiński W., Prokopowicz P. and Ślęzak D. (2003): Ordered fuzzy numbers. — Bull. Polish Acad. Sci. Math., Vol. 51, No. 3, pp. 329–341.
[10] Pearsal J. (Ed.) (1999): The New Oxford Dictionary of English. —Oxford: Oxford University Press.
[11] Piegat A. (2001): Fuzzy Modeling and Control. — Heidelberg, New York: Springer-Verlag.
[12] Piegat A. (2004): Is fuzzy evaluation a measurement? In: Soft Computing, Tools, Techniques and Applications (P. Grzegorzewski, M. Krawczak and S. Zadrożny, Eds.). — Warszawa: Akademicka Oficyna Wydawnicza EXIT, pp. 257–266.
[13] Piegat A. (2005a): On practical problems with explanation of the difference between possibility and probability. — Contr. Cybern., (accepted for publication in No. 2 in 2005).
[14] Piegat A. (2005b): Informative value of the possibilistic extension principle, In: Enhanced Methods in Computer Security, Biometric and Artificial Intelligence Systems (J. Pejas and A. Piegat, Eds.).—New York: Springer Science Business Media, Inc., pp. 301–310.
[15] Yager R.R. and Filev D.P. (1994): Essentials of Fuzzy Modeling and Control. — London: Wiley.
[16] Zadeh L.A. (1965): Fuzzy Sets. — Inf. Contr., Vol. 8, No. 3, pp. 338–353.
[17] Zadeh L.A. (1978): Fuzzy sets as a basis for a theory of possibility.—Fuzzy Sets Syst., Vol. 1, No. 28, pp. 3–28.
[18] Zadeh L.A. (2002): From computing with numbers to computing with words – From manipulation of measurements to manipulation of perceptions. — Int. J. Appl. Math. Comput. Sci., Vol. 12, No. 3, pp. 307–324.
[19] Zimmermann H.J. (1996): Fuzzy Set Theory.—Boston: Kluwer.