A New Definition of the Fuzzy Set
International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 1, pp. 125-140.

Voir la notice de l'article provenant de la source Library of Science

The present fuzzy arithmetic based on Zadeh's possibilistic extension principle and on the classic definition of a fuzzy set has many essential drawbacks. Therefore its application to the solution of practical tasks is limited. In the paper a new definition of the fuzzy set is presented. The definition allows for a considerable fuzziness decrease in the number of arithmetic operations in comparison with the results produced by the present fuzzy arithmetic.
Keywords: fuzzy set theory, fuzzy arithmetic, possibility
Mots-clés : zbiór rozmyty, prawdopodobieństwo, arytmetyka rozmyta
@article{IJAMCS_2005_15_1_a9,
     author = {Piegat, A.},
     title = {A {New} {Definition} of the {Fuzzy} {Set}},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {125--140},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a9/}
}
TY  - JOUR
AU  - Piegat, A.
TI  - A New Definition of the Fuzzy Set
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2005
SP  - 125
EP  - 140
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a9/
LA  - en
ID  - IJAMCS_2005_15_1_a9
ER  - 
%0 Journal Article
%A Piegat, A.
%T A New Definition of the Fuzzy Set
%J International Journal of Applied Mathematics and Computer Science
%D 2005
%P 125-140
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a9/
%G en
%F IJAMCS_2005_15_1_a9
Piegat, A. A New Definition of the Fuzzy Set. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 1, pp. 125-140. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a9/

[1] Bezdek J. (1993): Editorial, fuzzy models — What are they, and why?. — IEEE Trans. Fuzzy Syst., Vol. 1, No. 1, pp. 1–6.

[2] Driankov D., Hellendorn H. and Reinfrank M. (1993): An Introduction to Fuzzy Control. — Berlin: Springer.

[3] Dubois D. and Prade H. (1988): Possibility Theory. — New York: Plenum Press.

[4] Dubois D. and Prade H. (1996): An introduction to fuzzy systems. —Int. J. Appl. Math. Comput. Sci., Vol. 6, No. 3, pp. 485–503.

[5] Dubois D. and Prade H. (1997): The three semantics of fuzzy sets.—Fuzzy Sets Syst., Vol. 90, No. 2, pp.141–150.

[6] Kaufmann A. and Gupta M.M. (1991): Introduction to Fuzzy Arithmetic.—New York: Van Nostrand Reinhold.

[7] Klir G.J. (1997): Fuzzy arithmetic with requisite constraints. — Fuzzy Sets Syst., Vol. 91, pp. 165–175.

[8] Klir G.J. and Folger T.A. (1988): Fuzzy Sets, Uncertainty, and Information.—Englewood Cliffs: Prentice Hall.

[9] Kosiński W., Prokopowicz P. and Ślęzak D. (2003): Ordered fuzzy numbers. — Bull. Polish Acad. Sci. Math., Vol. 51, No. 3, pp. 329–341.

[10] Pearsal J. (Ed.) (1999): The New Oxford Dictionary of English. —Oxford: Oxford University Press.

[11] Piegat A. (2001): Fuzzy Modeling and Control. — Heidelberg, New York: Springer-Verlag.

[12] Piegat A. (2004): Is fuzzy evaluation a measurement? In: Soft Computing, Tools, Techniques and Applications (P. Grzegorzewski, M. Krawczak and S. Zadrożny, Eds.). — Warszawa: Akademicka Oficyna Wydawnicza EXIT, pp. 257–266.

[13] Piegat A. (2005a): On practical problems with explanation of the difference between possibility and probability. — Contr. Cybern., (accepted for publication in No. 2 in 2005).

[14] Piegat A. (2005b): Informative value of the possibilistic extension principle, In: Enhanced Methods in Computer Security, Biometric and Artificial Intelligence Systems (J. Pejas and A. Piegat, Eds.).—New York: Springer Science Business Media, Inc., pp. 301–310.

[15] Yager R.R. and Filev D.P. (1994): Essentials of Fuzzy Modeling and Control. — London: Wiley.

[16] Zadeh L.A. (1965): Fuzzy Sets. — Inf. Contr., Vol. 8, No. 3, pp. 338–353.

[17] Zadeh L.A. (1978): Fuzzy sets as a basis for a theory of possibility.—Fuzzy Sets Syst., Vol. 1, No. 28, pp. 3–28.

[18] Zadeh L.A. (2002): From computing with numbers to computing with words – From manipulation of measurements to manipulation of perceptions. — Int. J. Appl. Math. Comput. Sci., Vol. 12, No. 3, pp. 307–324.

[19] Zimmermann H.J. (1996): Fuzzy Set Theory.—Boston: Kluwer.