Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2005_15_1_a6, author = {Skrzypczyk, K.}, title = {Control of a {Team} of {Mobile} {Robots} {Based} on {Non-cooperative} {Equilibria} with {Partial} {Coordination}}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {89--97}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a6/} }
TY - JOUR AU - Skrzypczyk, K. TI - Control of a Team of Mobile Robots Based on Non-cooperative Equilibria with Partial Coordination JO - International Journal of Applied Mathematics and Computer Science PY - 2005 SP - 89 EP - 97 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a6/ LA - en ID - IJAMCS_2005_15_1_a6 ER -
%0 Journal Article %A Skrzypczyk, K. %T Control of a Team of Mobile Robots Based on Non-cooperative Equilibria with Partial Coordination %J International Journal of Applied Mathematics and Computer Science %D 2005 %P 89-97 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a6/ %G en %F IJAMCS_2005_15_1_a6
Skrzypczyk, K. Control of a Team of Mobile Robots Based on Non-cooperative Equilibria with Partial Coordination. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 1, pp. 89-97. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a6/
[1] Basar M. and Olsder G.J. (1982): Dynamic Noncooperative Game Theory. — London: Academic Press.
[2] Belta C. and Kumar V. (2004): Optimal motion generation for groups of robots: A geometric approach. — ASME J. Mech. Des., Vol. 126, No. 1, pp. 63–70.
[3] Esposito J. and Kumar V. (2000): Closed loop motion plans for mobile robots. — Proc. IEEE Int. Conf. Robotics and Automation, ICRA, San Francisco, CA, pp. 1020–1025.
[4] Ge S.S and Cui Y.J. (2002): Dynamic motion planning for mobile robots using potential field method. — Autonomous Robot., Vol. 13, No. 3, pp. 207–222.
[5] Gerkey B. and Mataric M.J. (2002): Sold!: Auction methods for multi-robot coordination.—IEEE Trans. Robot. Automat., Vol. 18, No. 5, p. 758–786.
[6] Golfarelli M. (1998): A game theory approach to coordination in MAS.—Proc. 13-th European Conf. Artificial Intelligence, Brighton, UK, pp. 610–611.
[7] Harsanyi J.C. and Selten R. (1998): A General Theory of Equilibrium Selection in Games.—Massachusetts: MIT Press.
[8] Koren Y. and Borenstein J: (1991): Potential Field Methods and their Inherent Limitations for Mobile Robot Navigation.— Proc. IEEE Conf. Robotics and Automation, Sacramento, CA, pp. 1398–1404.
[9] LaValle S. (2000): Robot motion planning: A game-theoretic foundation.—Algorithmica, Vol. 26, No. 3, pp. 430–465.
[10] Li Q. and Payandeh S. (2001): On coordination of robotic agents based on game theory.—(private communication).
[11] Masterton-Gibbons M. (2001): An Introduction to Gametheoretic Modelling. — Student Mathematical Library, Vol. II, American Mathematical Society.
[12] Maynard Smith J. (1982): Evolution and the Theory of Games. —Cambridge: Cambridge University Press.