Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2005_15_1_a10, author = {Gu, T. and Dong, R.}, title = {A {Novel} {Continuous} {Model} to {Approximate} {Time} {Petri} {Nets:} {Modelling} and {Analysis}}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {141--150}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a10/} }
TY - JOUR AU - Gu, T. AU - Dong, R. TI - A Novel Continuous Model to Approximate Time Petri Nets: Modelling and Analysis JO - International Journal of Applied Mathematics and Computer Science PY - 2005 SP - 141 EP - 150 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a10/ LA - en ID - IJAMCS_2005_15_1_a10 ER -
%0 Journal Article %A Gu, T. %A Dong, R. %T A Novel Continuous Model to Approximate Time Petri Nets: Modelling and Analysis %J International Journal of Applied Mathematics and Computer Science %D 2005 %P 141-150 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a10/ %G en %F IJAMCS_2005_15_1_a10
Gu, T.; Dong, R. A Novel Continuous Model to Approximate Time Petri Nets: Modelling and Analysis. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 1, pp. 141-150. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a10/
[1] Balduzzi F., Giua A. and Menga G. (2000): First-order hybrid Petri nets: A model for optimization and control. — IEEE Trans. Robot. Automat., Vol. 16, No. 4, pp. 382–398.
[2] Bail Le J., Alla H. and David R.(1992): Asymptotic continuous Petri nets: An efficient approximation of discrete event systems. — Proc. IEEE Int. Conf. Robotics and Automation, Nice, France, pp. 1050–1056.
[3] David R. and Alla H. (1987):Continuous Petri nets.—Proc. 8th Europ. Workshop Application and Theory of Petri Nets, Zaragoza, Spain, pp. 275–294.
[4] David R. and Alla H. (2001): On hybrid Petri nets. — Discr. Event Dynam. Syst. Theory Applic., Vol. 1, No. 1, pp. 9–40.
[5] Dubois E., Alla H. and David R. (1994): Continuous Petri net with maximal speeds depending on time. — Proc. 5th Int. Conf. Application and Theory of Petri Nets, Zaragoza, Spain, pp. 32–39.
[6] Gu T. and Bahri P.A. (2002): A survey of Petri-net applications in batch processes.—Comput. Ind., Vol. 47, No. 1, pp. 99–111.
[7] Gu T., Bahri P.A. and Lee P.L. (2002): Development of hybrid time Petri nets for scheduling of mixed batch/continuous process. — Proc. 15th IFAC World Congress, Barcelona, Spain, pp.1121–1126.
[8] Merlin P.M. and Farber D.J. (1976): Recoverability of communication protocols—Implications of a theoretical study. —IEEE Trans. Commun., Vol. 24, No. 9, pp. 1036–1043.
[9] Murata T. (1989): Petri nets: Properties, analysis and applications.—Proc. IEEE, Vol. 77, No. 1, pp. 541–580.
[10] Ramchandani C. (1974): Analysis of asynchronous concurrent systems by timed Petri nets. — Massachusetts Inst. Technology, Techn. Rep., No. 120.