On a regularization method for variational inequalities with P0 mappings
International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 1, pp. 35-44.

Voir la notice de l'article provenant de la source Library of Science

We consider partial Browder-Tikhonov regularization techniques for variational inequality problems with P0 cost mappings and box-constrained feasible sets. We present classes of economic equilibrium problems which satisfy such assumptions and propose a regularization method for these problems.
Keywords: variational inequalitie, partial regularization approach, P0-mappings
Mots-clés : nierówność wariacyjna, metoda regularyzacji
@article{IJAMCS_2005_15_1_a1,
     author = {Konnov, I. and Mazurkevich, E. and Ali, M.},
     title = {On a regularization method for variational inequalities with {P0} mappings},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {35--44},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a1/}
}
TY  - JOUR
AU  - Konnov, I.
AU  - Mazurkevich, E.
AU  - Ali, M.
TI  - On a regularization method for variational inequalities with P0 mappings
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2005
SP  - 35
EP  - 44
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a1/
LA  - en
ID  - IJAMCS_2005_15_1_a1
ER  - 
%0 Journal Article
%A Konnov, I.
%A Mazurkevich, E.
%A Ali, M.
%T On a regularization method for variational inequalities with P0 mappings
%J International Journal of Applied Mathematics and Computer Science
%D 2005
%P 35-44
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a1/
%G en
%F IJAMCS_2005_15_1_a1
Konnov, I.; Mazurkevich, E.; Ali, M. On a regularization method for variational inequalities with P0 mappings. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 1, pp. 35-44. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a1/

[1] Baiocchi C. and Capelo A. (1984): Variational and Quasivariational Inequalities. Applications to Free Boundary Problems. — New York: Wiley.

[2] Cottle R.W., Pang J.-S., and Stone R.E. (1992): The Linear Complementarity Problem. — Boston: Academic Press.

[3] Facchinei F. and Kanzow C. (1999): Beyond monotonicity in regularization methods for nonlinear complementarity problems. — SIAM J. Contr. Optim., Vol. 37, No. 4, pp. 1150–1161.

[4] Facchinei F. and Pang J.-S. (2003): Finite-Dimensional Variational Inequalities and Complementarity Problems. — Berlin: Springer-Verlag.

[5] Fiedler M. and Pták V. (1962): On matrices with nonpositive off-diagonal elements and principal minors. — Czechoslovak Math. Journal, Vol. 12 (87), No. 3, pp. 382–400.

[6] Kolstad C.D. and Mathiesen L. (1987): Necessary and sufficient conditions for uniqueness of a Cournot equilibrium. — Rev. Econ. Studies, Vol. 54, No. 4, pp. 681–690.

[7] Konnov I.V. (2000): Properties of gap functions for mixed variational inequalities.—Siberian J. Numer. Math., Vol. 3, No. 3, pp. 259–270.

[8] Konnov I.V. and Volotskaya E.O.(2002): Mixed variational inequalities and ecomonic equilibrium problems. — J. Appl. Math., Vol. 2, No. 6, pp. 289–314.

[9] Manne A.S. (1985): On the formulation and solution of economic equilibrium models. — Math. Program. Study 23, Amsterdam: North–Holland, pp. 1–22.

[10] Moré J. and Rheinboldt W. (1973): On P- and S- functions and related classes of n-dimensional nonlinear mappings.—Linear Alg. Appl., Vol. 6, No. 1, pp. 45–68.

[11] Nagurney A. (1999): Network Economics: A Variational Inequality Approach. — Dordrecht: Kluwer.

[12] Nikaïdo H. (1968): Convex Structures and Economic Theory. — New York: Academic Press.

[13] Okuguchi K. and Szidarovszky F. (1990): The Theory of Oligipoly with Multi-Product Firms. — Berlin: Springer.

[14] Ortega J.M. and Rheinboldt W.C. (1970): Iterative Solution of Nonlinear Equations in Several Variables.— New York: Academic Press.

[15] Qi H.D. (1999): Tikhonov regularization for variational inequality problems. — J. Optim. Theory Appl., Vol. 102, No. 1, pp. 193–201.