Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2005_15_1_a1, author = {Konnov, I. and Mazurkevich, E. and Ali, M.}, title = {On a regularization method for variational inequalities with {P0} mappings}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {35--44}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a1/} }
TY - JOUR AU - Konnov, I. AU - Mazurkevich, E. AU - Ali, M. TI - On a regularization method for variational inequalities with P0 mappings JO - International Journal of Applied Mathematics and Computer Science PY - 2005 SP - 35 EP - 44 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a1/ LA - en ID - IJAMCS_2005_15_1_a1 ER -
%0 Journal Article %A Konnov, I. %A Mazurkevich, E. %A Ali, M. %T On a regularization method for variational inequalities with P0 mappings %J International Journal of Applied Mathematics and Computer Science %D 2005 %P 35-44 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a1/ %G en %F IJAMCS_2005_15_1_a1
Konnov, I.; Mazurkevich, E.; Ali, M. On a regularization method for variational inequalities with P0 mappings. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 1, pp. 35-44. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a1/
[1] Baiocchi C. and Capelo A. (1984): Variational and Quasivariational Inequalities. Applications to Free Boundary Problems. — New York: Wiley.
[2] Cottle R.W., Pang J.-S., and Stone R.E. (1992): The Linear Complementarity Problem. — Boston: Academic Press.
[3] Facchinei F. and Kanzow C. (1999): Beyond monotonicity in regularization methods for nonlinear complementarity problems. — SIAM J. Contr. Optim., Vol. 37, No. 4, pp. 1150–1161.
[4] Facchinei F. and Pang J.-S. (2003): Finite-Dimensional Variational Inequalities and Complementarity Problems. — Berlin: Springer-Verlag.
[5] Fiedler M. and Pták V. (1962): On matrices with nonpositive off-diagonal elements and principal minors. — Czechoslovak Math. Journal, Vol. 12 (87), No. 3, pp. 382–400.
[6] Kolstad C.D. and Mathiesen L. (1987): Necessary and sufficient conditions for uniqueness of a Cournot equilibrium. — Rev. Econ. Studies, Vol. 54, No. 4, pp. 681–690.
[7] Konnov I.V. (2000): Properties of gap functions for mixed variational inequalities.—Siberian J. Numer. Math., Vol. 3, No. 3, pp. 259–270.
[8] Konnov I.V. and Volotskaya E.O.(2002): Mixed variational inequalities and ecomonic equilibrium problems. — J. Appl. Math., Vol. 2, No. 6, pp. 289–314.
[9] Manne A.S. (1985): On the formulation and solution of economic equilibrium models. — Math. Program. Study 23, Amsterdam: North–Holland, pp. 1–22.
[10] Moré J. and Rheinboldt W. (1973): On P- and S- functions and related classes of n-dimensional nonlinear mappings.—Linear Alg. Appl., Vol. 6, No. 1, pp. 45–68.
[11] Nagurney A. (1999): Network Economics: A Variational Inequality Approach. — Dordrecht: Kluwer.
[12] Nikaïdo H. (1968): Convex Structures and Economic Theory. — New York: Academic Press.
[13] Okuguchi K. and Szidarovszky F. (1990): The Theory of Oligipoly with Multi-Product Firms. — Berlin: Springer.
[14] Ortega J.M. and Rheinboldt W.C. (1970): Iterative Solution of Nonlinear Equations in Several Variables.— New York: Academic Press.
[15] Qi H.D. (1999): Tikhonov regularization for variational inequality problems. — J. Optim. Theory Appl., Vol. 102, No. 1, pp. 193–201.