Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2005_15_1_a0, author = {Kowalczuk, Z. and Suchomski, P.}, title = {Discrete-time {Predictive} {Control} with {Overparameterized} {Delay-plant} {Models} and an {Identified} {Cancellation} {Order}}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {5--34}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a0/} }
TY - JOUR AU - Kowalczuk, Z. AU - Suchomski, P. TI - Discrete-time Predictive Control with Overparameterized Delay-plant Models and an Identified Cancellation Order JO - International Journal of Applied Mathematics and Computer Science PY - 2005 SP - 5 EP - 34 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a0/ LA - en ID - IJAMCS_2005_15_1_a0 ER -
%0 Journal Article %A Kowalczuk, Z. %A Suchomski, P. %T Discrete-time Predictive Control with Overparameterized Delay-plant Models and an Identified Cancellation Order %J International Journal of Applied Mathematics and Computer Science %D 2005 %P 5-34 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a0/ %G en %F IJAMCS_2005_15_1_a0
Kowalczuk, Z.; Suchomski, P. Discrete-time Predictive Control with Overparameterized Delay-plant Models and an Identified Cancellation Order. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 1, pp. 5-34. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a0/
[1] Arent K., Mareels I.M.Y. and Polderman J.W. (1995): Adaptive control of linear systems based on approximate models. — Proc. 3rd European Control Conf., Rome, Italy, Vol. 2, pp. 868–873.
[2] Arent K., Mareels I.M.Y. and Polderman J.W. (1998): The polezero cancellation problem in adaptive control: A solution for minimum phase systems by approximate models.—Europ. J. Contr., Vol. 4, No. 3, pp. 320–332.
[3] Banerjee P. and Shah S.L. (1992): Tuning guidelines for robust generalized predictive control. — Proc. 31st IEEE Conf. Decision Control, Tucson, USA, pp. 3233–3234.
[4] Berlin F. and Frank P.M. (1992): Advanced optimal predictive control. — Proc. American Control Conf., Chicago, USA, (TM8) pp. 2027–2031.
[5] Bjorck A. (1996): Numerical Methods for Least Squares Problems.— Philadelphia: SIAM.
[6] van den Boom A.J.W. and van den Enden A.W.M. (1974): The determination of the orders of process- and noise dynamics.— Automatica, Vol. 10, No. 3, pp. 245–256.
[7] Boullion T.L. and Odell P.L. (1971): Generalized Inverse Matrices.— New York: Wiley.
[8] Bunch J.R. and Nielsen Ch.P. (1978): Updating the singular value decomposition. — Numer. Math., Vol. 31, No. 2, pp. 111–129.
[9] Camacho E.F. and Bordons C. (1999): Model predictive control. —Berlin: Springer.
[10] Clarke D.W. (1988): Application of generalized predictive control to industrial processes. — IEEE Contr. Syst. Mag., Vol. 8, No. 2, pp. 49–55.
[11] Clarke D.W. and Mohtadi C. (1989): Properties of generalized predictive control.—Automatica, Vol. 25, No. 6, pp. 859–876.
[12] Clarke D.W., Mohtadi C. and Tuffs P.S. (1987): Generalized predictive control - Part I. The basic algorithm, Part II. Extensions and interpretations. — Automatica, Vol. 23, No. 2, pp. 137–148, 149–160.
[13] Clarke D.W. and Scattolini R. (1991): Constrained receding horizon predictive control. — IEE Proc. D Contr. Theory Applic., Vol. 138, No. 4, pp. 347–354.
[14] Cullen C.G. and Hall C.A. (1971): On determining whether two polynomials are relatively prime.—IEEE Trans. Automat. Contr., Vol. 16, No. 4, pp. 369–370.
[15] Cutler C.R. and Ramaker B.L. (1980): Dynamic matrix control -A computer control algorithm. — Proc. Joint American Control Conf., San Francisco, USA, (WP5-B).
[16] Demircioglu H. and Clarke D.W. (1993): Generalised predictive control with end-point state weighting.—IEE Proc. D Contr. Theory Applic., Vol. 140, No. 4, pp. 275–282.
[17] Elshafei A.L., Dumont G. and Elnaggar A. (1991): Perturbation analysis of GPC with one step control horizon. — Automatica, Vol. 27, No. 4, pp. 725–728.
[18] Elshafei A.-L., Dumont G. and Elnaggar A. (1995): Stability and convergence analyses of an adaptive GPC based on statespace modelling. — Int. J. Contr., Vol. 61, No. 1, pp. 193–210.
[19] Filali S. and Wertz V. (2001): Using genetic algorithms to optimize the design parameters of generalized predictive controllers. — Int. J. Syst. Sci., Vol. 32, No. 4, pp. 503–512.
[20] Gawthrop P.J. (1987): Continuous-time Self-tuning Control. Vol. 1: Design. — Letchworth, UK: Research Studies Press.
[21] Gawthrop P.J., Jones R.W. and Sbarbaro D.G. (1996): Emulator-based control and internal model control: complementary approaches to robust control design. — Automatica, Vol. 32, No. 8, pp. 1223–1227.
[22] Georgiou A., Georgakis C. and Luyben W.L. (1988): Nonlinear dynamic matrix control for high-purity distillation columns. — AIChE J., Vol. 34, pp. 1287–1298.
[23] Grimble M.J. (1990): LQG predictive optimal control for adaptive applications. — Automatica, Vol. 26, No. 6, pp. 949–961.
[24] Grimble M.J. (1992): Generalized predictive control: an introduction to the advantages and limitations. — Int. J. Syst. Sci., Vol. 23, No. 1, pp. 85–98.
[25] Grimble M.J. (1993): Long range predictive optimal control law with guaranteed stability for process control applications. — Trans. ASME J. Dyn. Syst. Measur. Contr., Vol. 115, No. 4, pp. 600–610.
[26] Golub G.H. and van Loan C.F. (1996): Matrix Computations.— Baltimore: The Johns Hopkins University Press.
[27] Gorez R., Wertz V. and Zhu K.Y. (1987): On a generalized predictive control algorithm. — Syst. Contr. Lett., Vol. 9, pp. 369–377.
[28] Halpern M.E. (1988): Modified pole-assignment controller for plant models with exact or near pole-zero cancellation. — IEE Proc. D Contr. Theory Applic., Vol. 135, No. 3, pp. 189–195.
[29] Hangstrup M.E., Ordys A.W. and Grimble M.J. (1997): Multivariable state space LQGPC. — Techn. Rep., Industrial Control Centre, University of Strathclyde, Glasgow (Scotland), UK, (R-1997-4187).
[30] Higham N.J. (1996): Accuracy and Stability of Numerical Algorithms. — Philadelphia: SIAM.
[31] Hinde Jr.R.F. and Cooper D.J. (1994): A pattern-based approach to excitation diagnostics for adaptive process control. — Chem. Engng. Sci., Vol. 49, pp. 1403–1415.
[32] Ho B.L. and Kalman R.E. (1966): Effective construction of linear state-variable models from input/output functions. — Regelungstechnik, Vol. 14, No. 12, pp. 545–548.
[33] Jolly T. and Bentsman J. (1993): Generalized predictive control algorithms with guaranteed frozen-time stability and bounded tracking error.— Proc. American Control Conf., San Francisco (CA), USA, (WM7), pp. 384–388.
[34] de Keyser R., and van Cauwenberghe A. (1981): A self-tuning multistep predictor application. — Automatica, Vol. 17, No. 2, pp. 167–174.
[35] Kleinman D.L. (1974): Stabilizing a discrete, constant, linear system with application to iterative methods for solving the Riccati equation.—IEEE Trans. Automat. Contr., Vol. 19, No. 3, pp. 252–254.
[36] van der Kooji D.J. and Polderman J.W. (1993): Adaptive control of a restricted class of minimum phase systems on the basis of approximate models. — Proc. 2nd Europ. Contr. Conf., Groningen, Netherlands, Vol. 1, pp. 199–201.
[37] Kouvaritakis B. and Rossiter J.A. (1993): Multivariable stable generalised predictive control.—IEE Proc. D Contr. Theory Applic., Vol. 140, No. 5, pp. 364–372.
[38] Kouvaritakis B., Rossiter J.A. and Chang A.O.T. (1992): Stable generalised predictive control: an algorithm with guaranteed stability. — IEE Proc. D Contr. Theory Applic., Vol. 139, No. 4, pp. 349–362.
[39] Kouvaritakis B., Rossiter J.A. and Gossner J.R. (1997): Improved algorithm for multivariable stable generalised predictive control. — IEE Proc. D Contr. Theory Applic., Vol. 144, No. 4, pp. 309–312.
[40] Kowalczuk Z., Suchomski P. and Marcińczyk A. (1996): Discrete-time and continuous-time generalised predictive control with anticipated filtration: tuning rules. — Int. J. Appl. Math. Comput. Sci., Vol. 6, No. 4, pp. 707–732.
[41] Kowalczuk Z. and Suchomski P. (1997): Generalised predictive control of delay systems. — Proc. 4th Europ. Control Conf., Brussels, Belgium, Vol. 2, (CD-ROM: FR-M, B1) pp. 1–6.
[42] Kowalczuk Z. and Suchomski P. (1998): Two-degree-of-freedom stable GPC design. — Proc. IFAC Workshop Adaptive Systems in Control and Signal Processing, Glasgow, Scotland, U.K., pp. 243–248.
[43] Kowalczuk Z. and Suchomski P. (1999): Analytical design of stable continuous-time generalised predictive control. — Int. J. Appl. Math. Comput. Sci., Vol. 9, No. 1, pp. 53–100.
[44] Kowalczuk Z. and Suchomski P. (2001): Discrete-time predictive control design applied to overparameterized delayplant models. — Faculty Report, Electronics Telecom. Computer Sci., Gdańsk University of Technology, No. 5, pp. 1–33.
[45] Kowalczuk Z. and Suchomski P. (2002): Simple stable discretetime generalised predictive control with anticipated filtration of control error. — Contr. Cybern., Vol. 31, No. 1, pp. 1–22.
[46] Kowalczuk Z. and Suchomski P. (2004): Robust continuous-time controller design via structural Youla-Kučera parameterization with application to predictive control. — Optim. Contr. Applic. Meth., Vol. 24, pp. 1–28.
[47] Krämer K. and Unbehauen H. (1992): Aspects in selecting predictive adaptive control algorithms. — Proc. American Control Conf., Chicago, USA, (TP8) pp. 2396–2401.
[48] Kreisselmeier G. (1986): A robust indirect adaptive control approach. — Int. J. Contr., Vol. 43, No. 1, pp. 161–175.
[49] Kung S.Y. (1978): A new identification and model reduction algorithm via singular decomposition. — Proc. 12th Asilomar Conf. Circuits, Systems and Computers, Pacific Grove (CA), USA, pp. 705–714.
[50] Kwon W.H. and Byun D.G. (1989): Receding horizon tracking control as a predictive control and its stability properties. — Int. J. Contr., Vol. 50, No. 5, pp. 1807–1824.
[51] Kwon W.H., Noh S. and Lee Y. (1992a): Stability guaranteed generalized predictive controls and its equivalence to receding horizon tracking control. — Proc. American Control Conf., Chicago, USA, (TM8) pp. 2037–2041.
[52] Kwon W.H. and Pearson A.E. (1975): On the stabilization of a discrete constant linear system. — IEEE Trans. Automat. Contr., Vol. 20, No. 6, pp. 800–801.
[53] Kwon W.H. and Pearson A.E. (1978): On feedback stabilization of time-varying discrete linear systems. — IEEE Trans. Automat. Contr., Vol. 23, No. 3, pp. 479–481.
[54] Kwon W.H., Young Y.I. and Noh S. (1992b): Partition of GPC into a state observer and a state feedback controller. — Proc. American Control Conf., Chicago, USA, (TM8) pp. 2032–2036.
[55] Landau I.D., Lozano R. and M’Saad M. (1998): Adaptive Control. — Berlin: Springer.
[56] Lee J.H., Morari M. and Garcia C.E. (1994): State-space interpretation of model predictive control. — Automatica, Vol. 30, No. 4, pp. 707–717.
[57] Li S., Lim K. and Fisher D. (1989): A state-space formulation for model predictive control. — AIChE J., Vol. 35, pp. 241–249.
[58] Lim K.W., Ho W.K., Lee T.H., Ling K.V. and Xu, W. (1998): Generalised predictive controller with pole restriction. — IEE Proc. D Contr. Theory Applic., Vol. 145, No. 2, pp. 219–225.
[59] Longchamp R. (1983): Singular perturbation analysis of a receding horizon controller. — Automatica, Vol. 19, No. 3, pp. 303–308.
[60] Lozano-Leal R. (1989): Robust adaptive regulation without persistent excitation.—IEEE Trans. Automat. Contr., Vol. 34, No. 12, pp. 1260–1266.
[61] Lozano-Leal R. and Goodwin G. (1985): A globally convergent adaptive pole placement algorithm without a persistency of excitation requirement.—IEEE Trans. Automat. Contr., Vol. 30, No. 8, pp. 795–798.
[62] Lozano-Leal R. and Zhao X.H. (1994): Adaptive pole placement without excitation probing signals. — IEEE Trans. Automat. Contr., Vol. 39, No. 1, pp. 47–58.
[63] Maciejowski J.M. (2002): Predictive control with constraints. — Harlow: Prentice Hall.
[64] McIntosh A.R., Shah S.L. and Fisher D.G. (1991): Analysis and tuning of adaptive generalized predictive control. — Canad. J. Chem. Eng., Vol. 69, No. 2, pp. 97–110.
[65] Middleton R.H. and Goodwin G.C. (1990): Digital Control and Estimation.—Englewood Cliffs, N.J.: Prentice Hall.
[66] Mohtadi C. and Clarke D.W. (1986): Generalized Predictive Control, LQ or Pole Placement: A Unified Approach. — Proc. 25th IEEE Conf. Decision and Control, Athens, Greece, pp. 1536–1541.
[67] Mosca E. and Zhang J. (1992): Stable redesign of predictive control.— Automatica, Vol. 28, No. 6, pp. 1229–1233.
[68] Ogata K. (1995): Discrete-Time Control Systems.—Englewood Cliffs, N.J.: Prentice Hall.
[69] Ordys A.W. and Clarke D.W. (1993): A state-space description for GPC controllers. — Int. Journ. Systems Science, Vol. 24, No. 9, pp. 1727–1744.
[70] Ossman K.A. and Kamen E.D. (1987): Adaptive regulation of MIMO linear discrete-time systems without requiring a persistent excitation. — IEEE Trans. Automat. Contr., Vol. 32, No. 5, pp. 397–404.
[71] van Overschee P., de Moor B. and Fovereel W. (1997): Numerical algorithms for subspace state-space system identification.— Proc. ASME Design Engineering Technical Conf., Sacramento (CA), USA, (DETEC97VIB4254).
[72] Peng L., Fisher D.G. and Shah S.L. (1992): Tuning generalized predictive control using a pole-placement criterion. — Proc. American Control Conf., Chicago, USA, (TP8) pp. 2391–2395.
[73] Peng L., Fisher D.G. and Shah S.L. (1993): On-line tuning of GPC using a pole placement criterion. — Proc. American Control Conf., San Francisco, USA, (FM11) pp. 2637–2641.
[74] Peng Y. and Hanus R. (1991): A tuning strategy for generalized predictive control.—Contr. Theory Adv. Technol., Vol. 7, No. 1, pp. 153–166.
[75] Rani Y.K. and Unbehauen H. (1996): Tuning and auto-tuning in predictive control.—Proc. 13th TriennialWorld Congress of IFAC, San Francisco (CA), USA, Vol. C, (3b-04-1) pp. 109–114.
[76] Rani Y.K. and Unbehauen H. (1997): Study of predictive controller tuning methods. — Automatica, Vol. 33, No. 12, pp. 2243–2248.
[77] Richalet J., Rault A., Testud J.L. and Papon J. (1978): Model predictive heuristic control: Applications to industrial processes.— Automatica, Vol. 14, No. 5, pp. 413–428.
[78] Ricker N. L. (1990): Model predictive control with state estimation.— Ind. Eng. Chem. Res., Vol. 29, No. 3, pp. 374–382.
[79] Rissanen J. (1971): Recursive identification of linear systems.— SIAM J. Contr. Optim., Vol. 9, No. 3, pp. 420–430.
[80] Rouhani R. and Mehra R.K. (1982): Model algorithmic control (MAC). Basic theoretical properties. — Automatica, Vol. 18, No. 4, pp. 401–414.
[81] Rossiter J.A. (1997): Predictive controllers with guaranteed stability and mean-level controllers for unstable plants. — Europ. J. Contr., Vol. 3, No. 2, pp. 292–303.
[82] Rossiter J.A. (2003): Model-based predictive control: a practical approach. — Boca Raton: CRC Press.
[83] Rossiter J.A., Chisci L. and Lombardi A. (1997): Stabilizing predictive control algorithms in the presence of common factors. — Proc. 4th European Control Conf., Brussels, Belgium, (CD-ROM: TH-E, B5) pp. 1–6.
[84] Rossiter J.A. and Kouvaritakis B. (1994): Numerical robustness and efficiency of generalised predictive control algorithms with guaranteed stability. — IEE Proc. D Contr. Theory Applic., Vol. 141, No. 3, pp. 154–162.
[85] Rossiter J.A., Kouvaritakis B. and Rice M.J. (1998): A numerically robust state-space approach to stable-predictive control strategies. — Automatica, Vol. 34, No. 1, pp. 65–73.
[86] Scattolini R. and Bittanti S. (1990): On the choice of the horizon in long-range predictive control: Some simple criteria. — Automatica, Vol. 26, No. 5, pp. 915–917.
[87] Scokaert P.O.M. and Clarke D.W. (1994): Stabilising properties of constrained predictive control. — Proc. IEE-D Contr. Theory Applic., Vol. 141, No. 5, pp. 295–304.
[88] Shah S.L., Mohtadi C. and Clarke D.W. (1987): Multivariable adaptive control without prior knowledge of the delay matrix. —Syst. Contr. Lett., Vol. 9, pp. 295–306.
[89] Silverman L.M. (1971): Realization of linear dynamical systems. — IEEE Trans. Automat. Contr., Vol. 16, No. 6, pp. 554–567.
[90] Söderström T. (1974): Convergence properties of the generalized least squares identification method. — Automatica, Vol. 10, No. 6, pp. 617–626.
[91] Söderström T. (1975): Test of pole-zero cancellation in estimated models. — Automatica, Vol. 11, No. 5, pp. 537–541.
[92] Söderström T. and Stoica P. (1989): System Identification. — Hemel Hemstead, U.K.: Prentice Hall.
[93] Stewart G.W. (1998): Matrix Algorithms. Vol. I: Basic Decompositions. — Philadelphia: SIAM.
[94] Stoica P. and Söderström T. (1996): Common factor detection and estimation. — Techn. Rep. Systems Control Group, Dept. Technology, Uppsala University, Uppsala, Sweden.
[95] Suchomski P. and Kowalczuk Z. (2002a): Pre-arrangement of solvability, complexity, stability and quality of GPC systems.— Int. J. Adapt. Contr. Signal Proces., Vol. 16, No. 3, pp. 177–191.
[96] Suchomski P. and Kowalczuk Z. (2002b): Analytical design of stable delta-domain generalized predictive control.—Optim. Contr. Applic. Meth., Vol. 23, pp. 239–273.
[97] Taube B. (1991): Clearness of tuning possibilities in long-range predictive control (LRPC). — Proc. 30th IEEE Conf. Decision and Control, Brighton, UK, (F2-10) pp. 2726–2728.
[98] Taube B. and Lampe B. (1992): LQGPC - a predictive design as tradeoff between LQG and GPC. — Proc. 31st Conf. Decision and Control, Tucson, USA, (FP6) pp. 3579–3581.
[99] Tether A.J. (1970): Construction of minimal linear statevariable models from finite input-output data. — IEEE Trans. Automat. Contr., Vol. 15, No. 4, pp. 427–436.
[100] Unbehauen H. and Göhring B. (1974): Tests for determining model order in parameter estimation. — Automatica, Vol. 10, No. 3, pp. 233–244.
[101] Vogt W.G. and Bose N.K. (1970): A method to determine whether two polynomials are relatively prime. — IEEE Trans. Autom. Contr., Vol. 15, No. 3, pp. 379–380.
[102] Yoon T.W. and Clarke D.W. (1993): Receding-horizon predictive control with exponential weighting.—Int. J. Syst. Sci., Vol. 24, No. 9, pp. 1745–1757.
[103] Wellstead P.E. and Zarrop M.B. (1991): Self-tuning Systems. Control and Signal Processing.—Chichester: Wiley.
[104] Xi Y. (1989): Minimal form of a predictive controller based on the step-response model. — Int. J. Contr., Vol. 49, No. 1, pp. 57–64.
[105] Ydstie B.E. (1984): Extended horizon adaptive control.—Proc. 9th Triennal World Congress of IFAC, Budapest, Hungary, Vol. VII, (14.4/E-4) pp. 133–137.
[106] Ydstie B.E., Kershenbaum L.S. and Sargent R.W.H. (1985): Theory and application of the extended horizon self-tuning controller.—AIChE J., Vol. 31, No. 11, pp. 1771–1780.
[107] Zeiger H.P. and McEwen A.J. (1974): Approximate linear realizations of given dimension via Ho’s algorithm. — IEEE Trans. Automat. Contr., Vol. 19, No. 2, pp. 153.
[108] Zhang J. (1996): Property analysis of GPC based on coefficient mapping.—Proc. 13th TriennialWorld Congress of IFAC, San Francisco, USA, Vol. C, (2a-13-5) pp. 457–462.
[109] Zhang J. and Xi Y. (1998): Some GPC stability results.—Int. J. Contr., Vol. 70, No. 5, pp. 831–840.