Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2004_14_4_a10, author = {Szeliga, D. and Gaw\k{a}d, J. and Pietrzyk, M.}, title = {Parameters {Identification} of {Material} {Models} {Based} on the {Inverse} {Analysis}}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {549--556}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_4_a10/} }
TY - JOUR AU - Szeliga, D. AU - Gawąd, J. AU - Pietrzyk, M. TI - Parameters Identification of Material Models Based on the Inverse Analysis JO - International Journal of Applied Mathematics and Computer Science PY - 2004 SP - 549 EP - 556 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_4_a10/ LA - en ID - IJAMCS_2004_14_4_a10 ER -
%0 Journal Article %A Szeliga, D. %A Gawąd, J. %A Pietrzyk, M. %T Parameters Identification of Material Models Based on the Inverse Analysis %J International Journal of Applied Mathematics and Computer Science %D 2004 %P 549-556 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_4_a10/ %G en %F IJAMCS_2004_14_4_a10
Szeliga, D.; Gawąd, J.; Pietrzyk, M. Parameters Identification of Material Models Based on the Inverse Analysis. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 4, pp. 549-556. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_4_a10/
[1] Bodin A., Sietsma J. and van der Zwaag S. (2001): Flow stress prediction during intercritical deformation of a low-carbon steel with a rule of mixtures and Fe-simulations.— Scripta Materialia, Vol. 45, No. 8, pp. 875–882.
[2] Boyer B. and Massoni E. (1999): Identification of tribological parameters during upsetting tests using inverse analysis with a 2D finite element code, In: Advanced Technology of Plasticity, Vol. I, (M. Geiger, Ed.).—Nuremberg: Univ. of Erlangen, pp. 347–352.
[3] Boyer B. and Massoni E.(2001): Inverse analysis for identification of parameters during thermo-mechanical tests. — Proc. Conf. NUMIFORM 2001, Toyohaski, Japan, pp. 281–284.
[4] Braasch H. and Estrin Y. (1993): Parameter identification for a two-internal-variable constitutive model using the evolution strategy, In: Material Parameter Estimation for Modern Constitutive Equations (L.A. Bertram, S.B. Brown and A.D. Freed, Eds.). — Fairfield: ASME, ADM, , Vol. 168, pp. 47–56.
[5] Forestier R., Massoni E. and Chastel Y. (2002): Estimation of constitutive parameters using an inverse method coupled to a 3D finite element software. — J. Mat. Proc. Techn., Vol. 125–126, pp. 594–601.
[6] Gavrus A., Massoni E. and Chenot J.L. (1996): An inverse analysis using a finite element model for identification of rheological parameters.—Proc. Conf. Metal Forming’96, Cracow, Poland, Vol. 60, pp.447–454.
[7] Gawąd J. and Szeliga D. (2002): Application of evolutionary algorithms for inverse analysis and computations. — Metal. Foundry Eng., Vol. 28, No. 2, pp. 137–150.
[8] Kobayashi S., Oh S.I. and Altan T. (1989): Metal Forming and the Finite Element Method. — Oxford: Oxford University Press.
[9] Kondek T., Szeliga D. and Pietrzyk M. (2003): Program for identification of rheological parameters based on the axisymmetrical compression test. — Proc. 10-th Conf. Kom-PlasTech, Wisła-Jawornik, Poland, pp. 207–214 (in Polish).
[10] Lenard J.G., M. Pietrzyk and L. Cser (1999): Mathematical and Physical Simulation of the Properties of Hot Rolled Products. — Amsterdam: Elsevier.
[11] Pietrzyk M., Kusiak H., Lenard J.G. and Malinowski Z. (1994): Heat exchange between the workpiece and the tool in metal forming processes. — Proc. Conf. FORMABILITY’94, Ostrava, Czech Republic, pp. 329–338.
[12] Pietrzyk M. and Kuziak R. (2004): Development of the constitutive law for microalloyed steels deformed in the twophase range of temperatures. — Proc. Conf. Metal Forming 2004, Cracow, Poland (in print).
[13] Szeliga D. and Pietrzyk M. (2001): Problem of the starting point generation for the inverse analysis of compression tests.— Metall. Foundry Eng., Vol. 27, No. 2, pp. 167–182.
[14] Szeliga D.and Pietrzyk M.(2002): Identification of rheological and tribological parameters, In: Metal Forming Science and Practice (Lenard J.G., Ed.). — Amsterdam: Elsevier, pp. 227–258.
[15] Szeliga D., Gawąd J., Kondek T. and Pietrzyk M. (2003): Identification of parameters of models based on the inverse analysis.— Proc. Conf. Computer methods and systems in scientific research and engineering desing, Cracow, Poland, pp. 761–766 (in Polish).
[16] Szyndler D., Pietrzyk M. and Kuziak R.(2001a): Estimation of rheological and friction parameters in hot forming processes as inverse problem. — Proc. Conf. ESAFORM 2001, Liege, Belgium, pp. 191–194.
[17] Szyndler D., Pietrzyk M. and Hodgson P.D. (2001b): Identification of parameters in the internal variable constitutive model and friction model for hot forming of steels.—Proc. Conf. NUMIFORM 2001, Toyohaski, Japan, pp. 297–302.
[18] Talar J., Szeliga D. and Pietrzyk M. (2002): Application of genetic algorithms for identification of rheological and friction parameters of copper.—Arch. Metall., Vol. 47, No. 1, pp. 27–41.