Parameters Identification of Material Models Based on the Inverse Analysis
International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 4, pp. 549-556.

Voir la notice de l'article provenant de la source Library of Science

The paper presents an application of the inverse analysis to the identification of two models: a phase transformation model and a rheological model. The optimization algorithm for the inverse analysis was tested for various techniques of searching for the minimum: derivative-free and gradient methods, as well as genetic algorithms. Simulation results were validated for microalloyed niobium steel. An optimization strategy, which is adequate for the inverse analysis, is suggested.
Keywords: inverse analysis, phase transformation, internal variable model
Mots-clés : analiza odwrotna, przemiana fazowa, zmienna wewnętrzna
@article{IJAMCS_2004_14_4_a10,
     author = {Szeliga, D. and Gaw\k{a}d, J. and Pietrzyk, M.},
     title = {Parameters {Identification} of {Material} {Models} {Based} on the {Inverse} {Analysis}},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {549--556},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_4_a10/}
}
TY  - JOUR
AU  - Szeliga, D.
AU  - Gawąd, J.
AU  - Pietrzyk, M.
TI  - Parameters Identification of Material Models Based on the Inverse Analysis
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2004
SP  - 549
EP  - 556
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_4_a10/
LA  - en
ID  - IJAMCS_2004_14_4_a10
ER  - 
%0 Journal Article
%A Szeliga, D.
%A Gawąd, J.
%A Pietrzyk, M.
%T Parameters Identification of Material Models Based on the Inverse Analysis
%J International Journal of Applied Mathematics and Computer Science
%D 2004
%P 549-556
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_4_a10/
%G en
%F IJAMCS_2004_14_4_a10
Szeliga, D.; Gawąd, J.; Pietrzyk, M. Parameters Identification of Material Models Based on the Inverse Analysis. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 4, pp. 549-556. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_4_a10/

[1] Bodin A., Sietsma J. and van der Zwaag S. (2001): Flow stress prediction during intercritical deformation of a low-carbon steel with a rule of mixtures and Fe-simulations.— Scripta Materialia, Vol. 45, No. 8, pp. 875–882.

[2] Boyer B. and Massoni E. (1999): Identification of tribological parameters during upsetting tests using inverse analysis with a 2D finite element code, In: Advanced Technology of Plasticity, Vol. I, (M. Geiger, Ed.).—Nuremberg: Univ. of Erlangen, pp. 347–352.

[3] Boyer B. and Massoni E.(2001): Inverse analysis for identification of parameters during thermo-mechanical tests. — Proc. Conf. NUMIFORM 2001, Toyohaski, Japan, pp. 281–284.

[4] Braasch H. and Estrin Y. (1993): Parameter identification for a two-internal-variable constitutive model using the evolution strategy, In: Material Parameter Estimation for Modern Constitutive Equations (L.A. Bertram, S.B. Brown and A.D. Freed, Eds.). — Fairfield: ASME, ADM, , Vol. 168, pp. 47–56.

[5] Forestier R., Massoni E. and Chastel Y. (2002): Estimation of constitutive parameters using an inverse method coupled to a 3D finite element software. — J. Mat. Proc. Techn., Vol. 125–126, pp. 594–601.

[6] Gavrus A., Massoni E. and Chenot J.L. (1996): An inverse analysis using a finite element model for identification of rheological parameters.—Proc. Conf. Metal Forming’96, Cracow, Poland, Vol. 60, pp.447–454.

[7] Gawąd J. and Szeliga D. (2002): Application of evolutionary algorithms for inverse analysis and computations. — Metal. Foundry Eng., Vol. 28, No. 2, pp. 137–150.

[8] Kobayashi S., Oh S.I. and Altan T. (1989): Metal Forming and the Finite Element Method. — Oxford: Oxford University Press.

[9] Kondek T., Szeliga D. and Pietrzyk M. (2003): Program for identification of rheological parameters based on the axisymmetrical compression test. — Proc. 10-th Conf. Kom-PlasTech, Wisła-Jawornik, Poland, pp. 207–214 (in Polish).

[10] Lenard J.G., M. Pietrzyk and L. Cser (1999): Mathematical and Physical Simulation of the Properties of Hot Rolled Products. — Amsterdam: Elsevier.

[11] Pietrzyk M., Kusiak H., Lenard J.G. and Malinowski Z. (1994): Heat exchange between the workpiece and the tool in metal forming processes. — Proc. Conf. FORMABILITY’94, Ostrava, Czech Republic, pp. 329–338.

[12] Pietrzyk M. and Kuziak R. (2004): Development of the constitutive law for microalloyed steels deformed in the twophase range of temperatures. — Proc. Conf. Metal Forming 2004, Cracow, Poland (in print).

[13] Szeliga D. and Pietrzyk M. (2001): Problem of the starting point generation for the inverse analysis of compression tests.— Metall. Foundry Eng., Vol. 27, No. 2, pp. 167–182.

[14] Szeliga D.and Pietrzyk M.(2002): Identification of rheological and tribological parameters, In: Metal Forming Science and Practice (Lenard J.G., Ed.). — Amsterdam: Elsevier, pp. 227–258.

[15] Szeliga D., Gawąd J., Kondek T. and Pietrzyk M. (2003): Identification of parameters of models based on the inverse analysis.— Proc. Conf. Computer methods and systems in scientific research and engineering desing, Cracow, Poland, pp. 761–766 (in Polish).

[16] Szyndler D., Pietrzyk M. and Kuziak R.(2001a): Estimation of rheological and friction parameters in hot forming processes as inverse problem. — Proc. Conf. ESAFORM 2001, Liege, Belgium, pp. 191–194.

[17] Szyndler D., Pietrzyk M. and Hodgson P.D. (2001b): Identification of parameters in the internal variable constitutive model and friction model for hot forming of steels.—Proc. Conf. NUMIFORM 2001, Toyohaski, Japan, pp. 297–302.

[18] Talar J., Szeliga D. and Pietrzyk M. (2002): Application of genetic algorithms for identification of rheological and friction parameters of copper.—Arch. Metall., Vol. 47, No. 1, pp. 27–41.