Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2004_14_4_a0, author = {Felgenhauer, U.}, title = {Optimality and sensitivity for semilinear bang-bang type optimal control problems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {447--454}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_4_a0/} }
TY - JOUR AU - Felgenhauer, U. TI - Optimality and sensitivity for semilinear bang-bang type optimal control problems JO - International Journal of Applied Mathematics and Computer Science PY - 2004 SP - 447 EP - 454 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_4_a0/ LA - en ID - IJAMCS_2004_14_4_a0 ER -
%0 Journal Article %A Felgenhauer, U. %T Optimality and sensitivity for semilinear bang-bang type optimal control problems %J International Journal of Applied Mathematics and Computer Science %D 2004 %P 447-454 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_4_a0/ %G en %F IJAMCS_2004_14_4_a0
Felgenhauer, U. Optimality and sensitivity for semilinear bang-bang type optimal control problems. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 4, pp. 447-454. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_4_a0/
[1] Agrachev A., Stefani G. and Zezza P.L. (2002): Strong optimality for a bang-bang trajectory. — SIAM J. Contr. Optim., Vol. 41, No. 4, pp. 991–1014.
[2] Dontchev A. and Malanowski K. (2000): A characterization of Lipschitzian stability in optimal control, In: Calculus of Variations and Optimal Control (A. Ioffe et al., Eds.). — Boca Raton, FL: Chapman Hall/CRC, Vol. 411, pp. 62–76.
[3] Felgenhauer U. (2003a): On stability of bang-bang type controls. — SIAM J. Contr. Optim., Vol. 41, No. 6, pp. 1843–1867.
[4] Felgenhauer U. (2003b): Stability and local growth near bounded-strong local optimal controls, In: System Modelling and Optimization XX (E. Sachs and R. Tichatschke, Eds.). — Dordrecht, The Netherlands: Kluwer, pp. 213–227.
[5] Felgenhauer U. (2003c): On sensitivity results for bangbang type controls of linear systems. — Preprint M-01/2003, Technical University Cottbus, available at www.math.tu-cottbus.de/INSTITUT/lsopt/publication/preprints.html.
[6] Felgenhauer U. (2003d): Optimality and sensitivity properties of bang-bang controls for linear systems. — Proc. 21-st IFIP Conf. System Modeling and Optimization, Sophia Antipolis, France, Dordrecht, The Netherlands: Kluwer, (submitted).
[7] Fiacco A.V. (1983): Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. — New York: Academic Press.
[8] Kim J.-H.R. and Maurer H. (2003): Sensitivity analysis of optimal control problems with bang-bang controls. — Proc. 42nd IEEE Conf. Decision and Control, CDC’2003, Maui, Hawaii, USA, Vol. 4, pp. 3281–3286.
[9] Malanowski K. (2001): Stability and Sensitivity Analysis for Optimal Control Problems with Control-State Constraints.— Warsaw: Polish Academy of Sciences.
[10] Maurer H. and Osmolovskii N.P. (2004): Second order sufficient conditions for time-optimal bang-bang control problems. —SIAM J. Contr. Optim., Vol. 42, No. 6, pp. 2239–2263.
[11] Maurer H. and Pickenhain S. (1995): Second order sufficient conditions for optimal control problems with mixed control-state constraints. — J. Optim. Theor. Appl., Vol. 86, No. 3, pp. 649–667.
[12] Milyutin A.A. and Osmolovskii N.P. (1998): Calculus of Variations and Optimal Control.—Providence: AMS.
[13] Noble J. and Schaettler H. (2002): Sufficient conditions for relative minima of broken extremals in optimal control theory. —J. Math. Anal. Appl., Vol. 269, No. 1, pp. 98–128.
[14] Osmolovskii N.P. (2000): Second-order conditions for broken extremals, In: Calculus of Variations and Optimal Control (A. Ioffe et al., Eds.). — Boca Raton, FL: Chapman Hall/CRC, Vol. 411, pp. 198–216.
[15] Osmolovskii N.P. and Lempio F. (2002): Transformation of quadratic forms to perfect squares for broken extremals. —Set-Valued Anal., Vol. 10, No. 2–3, pp. 209–232.
[16] Sarychev A.V. (1997): First- and second-order sufficient optimality conditions for bang-bang controls. — SIAM J. Contr. Optim., Vol. 35, No. 1, pp. 315–340.