A hybrid approach for scheduling transportation networks
International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 3, pp. 397-409.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we consider a regulation problem of an urban transportation network. From a given timetable, we aim to find a new schedule of multiple vehicles after the detection of a disturbance at a given time. The main objective is to find a solution maximizing the level of service for all passengers. This problem was intensively studied with evolutionary approaches and multi-agent techniques, but without identifying its type before. In this paper, we formulate the problem as a classical one in the case of an unlimited vehicle capacity. In the case of a limited capacity and an integrity constraint, the problem becomes difficult to solve. Then, a new coding and well-adapted operators are proposed for such a problem and integrated in a new evolutionary approach.
Keywords: transportation systems, traffic regulation, genetic algorithm, multicriteria optimization
Mots-clés : system transportowy, regulacja ruchu, algorytm genetyczny, optymalizacja wielokryterialna
@article{IJAMCS_2004_14_3_a8,
     author = {Dridi, M. and Kacem, I.},
     title = {A hybrid approach for scheduling transportation networks},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {397--409},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a8/}
}
TY  - JOUR
AU  - Dridi, M.
AU  - Kacem, I.
TI  - A hybrid approach for scheduling transportation networks
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2004
SP  - 397
EP  - 409
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a8/
LA  - en
ID  - IJAMCS_2004_14_3_a8
ER  - 
%0 Journal Article
%A Dridi, M.
%A Kacem, I.
%T A hybrid approach for scheduling transportation networks
%J International Journal of Applied Mathematics and Computer Science
%D 2004
%P 397-409
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a8/
%G en
%F IJAMCS_2004_14_3_a8
Dridi, M.; Kacem, I. A hybrid approach for scheduling transportation networks. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 3, pp. 397-409. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a8/

[1] Aloulou M. (1999): Application des algorithmes génétiques à la régulation du trafic des bus. — Mémoire de DEA en Informatique Industrielle, Université des Sciences et Technologies de Lille, France.

[2] Banzhaf W., Nordin P., Keller R.E. and Francone F.D. (1998): Genetic Programming. An Introduction on the Automatic Evolution of Computer Programs and Its Application. — San Francisco: Morgan Kaufmann.

[3] Burke E.K. and Smith A.J. (2000): Hybrid evolutionary techniques for the maintenance scheduling problem. — IEEE Trans. Power Syst. Vol. 15, No. 1, pp. 122–128.

[4] Dasgupta D. and Michalewicz Z. (1997): Evolutionary Algorithms in Engineering Applications. — Berlin: Springer.

[5] Fayech B. (2000): Application des Algorithmes Evolutionnistes aux problèmes de Régulation du Trafic des Autobus. — Rapport de DEA, Université de Lille 1, UFR IEEA, France.

[6] Fayech B., Hammadi S., Maouche S. and Borne P. (2001): Urbain bus traffic regulation by evolutionary algorithms. — Proc. IEEE/SMC’01 Conf., Tucson, USA, pp. 1316–1322.

[7] Fayech B., Hammadi S., Maouche S. and Borne P. (2002a): Approche coopérative pour la régulation d’un réseau de transport urbain multimodal. — Proc. Conférence Internationale Francophone d’Automatique, CIFA’02, Nantes, France, pp. 177–182.

[8] Fayech B., Hammadi S., Maouche S. and Borne P. (2002b): An evolutionary rescheduling approach for an urban transport network with simultaneous disturbances.—Proc. 2nd Conf. JETA 2002, Sousse, Tunisia.

[9] Fonseca, C.M. and Fleming P.J. (1998): Multiobjective optimization and multiple constraint handling with evolutionary algorithms-Part I: Unified formulation. — IEEE Trans/SMC, Part A, Vol. 28, No. 1, pp. 26–37.

[10] Goldberg D.E. (1989): Genetic Algorithms in Search, Optimization, and Machine Learning. — Reading, MA: Addison Wesley.

[11] Kacem I., Hammadi S. and Borne P. (2003): Fuzzy Evolutionary Approach for Multi-objective Combinatorial Optimization: Application to Scheduling Problems. Fuzzy Sets-Based Heuristics for Optimization.—Springer.