Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2004_14_3_a7, author = {Julstrom, B. A.}, title = {Codings and operators in two genetic algorithms for the leaf-constrained minimum spanning tree problem}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {385--396}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a7/} }
TY - JOUR AU - Julstrom, B. A. TI - Codings and operators in two genetic algorithms for the leaf-constrained minimum spanning tree problem JO - International Journal of Applied Mathematics and Computer Science PY - 2004 SP - 385 EP - 396 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a7/ LA - en ID - IJAMCS_2004_14_3_a7 ER -
%0 Journal Article %A Julstrom, B. A. %T Codings and operators in two genetic algorithms for the leaf-constrained minimum spanning tree problem %J International Journal of Applied Mathematics and Computer Science %D 2004 %P 385-396 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a7/ %G en %F IJAMCS_2004_14_3_a7
Julstrom, B. A. Codings and operators in two genetic algorithms for the leaf-constrained minimum spanning tree problem. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 3, pp. 385-396. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a7/
[1] Achuthan N.R., Caccetta L., Caccetta P.A. and Geelan J.F. (1994): Computational methods for the diameter restricted minimum weight spanning tree problem.—Australasian J. Combinat., Vol. 10, pp. 51–71.
[2] Alp O., Erkut O. and Drezner Z. (2003): An efficient genetic algorithm for the p-median problem.—Ann. Opers. Res., Vol. 122, No. 1–4, pp. 21–42.
[3] Beasley J.E. (1990): OR-library: Distributing test problems by electronic mail. — J. Oper. Res. Soc., Vol. 41, pp. 1069–1072.
[4] Borůvka O. (1926): Přıspĕvek k řěsenı otázky ekonomické stavby elektrovodnıch sıtı. — Elektronický obzor, Vol. 15, pp. 153–154.
[5] Cayley A. (1889): A theorem on trees. — Quart. J. Math., Vol. 23, pp. 376–378.
[6] Correa E.S., Steiner M.T.A., Freitas A.A. and Carnieri C. (2001): A genetic algorithm for the p-median problem. — Proc. Genetic and Evolutionary Computation Conference, San Francisco, CA, pp. 1268–1275.
[7] Crawford K.D., Hoelting C.J.,Wainwright R.L. and Schoenefeld D.A. (1997): A study of fixed-length subset recombination, In: Foundations of Genetic Algorithms 4 (R.K. Belew and M.D. Vose, Eds.). — San Francisco, CA: Morgan Kaufmann, Vol. 4, pp. 365–378.
[8] Crawford K.D., Wainwright K.D. and Vasicek D.J. (1995): Detecting multiple outliers in regression data using genetic algorithms. — Proc. ACM Symp. Applied Computing, New York, pp. 351–356.
[9] Deo N. and Abdalla A. (2000): Computing a diameter-constrained minimum spanning tree in parallel, In: Algorithms and Complexity (G. Bongiovanni, G. Gambosi and R. Petreschi, Eds.).—LNCS, Vol. 1767, pp. 17–31, Berlin: Springer.
[10] Deo N. and Micikevicius P. (1999): A heuristic for a leaf constrained minimum spanning tree problem. — Congressus Numerantium, Vol. 141, pp. 61–72.
[11] Deo N. and Micikevicius P. (2002): A new encoding for labeled trees employing a stack and a queue.—Bull. Inst. Combinat. Its Appl., Vol. 34, pp. 77–85.
[12] Dibble C. and Densham P.J. (1993): Generating interesting alternatives in GIS and SDSS using genetic algorithms. — Proc. GIS/LIS Symposium, Minneapolis, MN, pp. 180–189.
[13] Edelson W. and Gargano M.L. (2000): Feasible encodings for GA solutions of constrained minimal spanning tree problems. — Late-Breaking Papers at the 2000 Genetic and Evolutionary Computation Conference, Las Vegas, NV, pp. 82–89.
[14] Estivill-Castro V. and Torres-Velásquez R. (1999): Hybrid genetic algorithm for solving the p-median problem, In: Simulated Evolution and Learning: Second Asia-Pacific Conference on Simulated Evolution and Learning (B. McKay, X. Yao, C. S. Newton, J.-H. Kim and T. Furuhashi, Eds.). —LNCS, Vol. 1585, pp. 18–25, Berlin: Springer.
[15] Even R. (1973): Algorithmic Combinatorics. — New York: Macmillan.
[16] Goldberg D.E. and Deb K. (1991): A comparative analysis of selection schemes used in genetic algorithms, In: Foundations of Genetic Algorithms (G.J.E. Rawlins, Ed.). — San Mateo, CA: Morgan Kaufmann, pp. 69–93.
[17] Gottlieb J., Julstrom B.A., Raidl G.R. and Rothlauf F. (2001): Prüfer numbers: A poor representation of spanning trees for evolutionary search. — Proc. Genetic and Evolutionary Computation Conference, San Francisco, CA, pp. 343–350.
[18] Hoelting C.J., Schoenefeld D.A. and Wainwright R.L. (1995): Approximation techniques for variations of the p-median problem. — Proc. ACM Symp. Applied Computing, New York, pp. 293–299.
[19] Hosage C.M. and Goodchild M.F. (1986): Discrete space location-allocation solutions from genetic algorithms. — Ann. Oper. Res., Vol. 6, pp. 35–46.
[20] Julstrom B.A. (1999): It’s all the same to me: Revisiting rankbased probabilities and tournaments. — Proc. Congress Evolutionary Computation, CEC99, Vol. 2, pp. 1501–1505, Piscataway, NJ: IEEE Press.
[21] Julstrom B.A. (2001): The Blob Code: A better string coding of spanning trees for evolutionary search, In: Genetic and Evolutionary Computation ConferenceWorkshop Program, (A.S.Wu, Ed.).—pp. 256–261, San Francisco, CA.
[22] Julstrom B.A. (2004): Better greedy heuristics for the leaf-constrained minimum spanning tree problem in complete graphs.—Discr. Appl. Math., (Submitted).
[23] Julstrom B.A. and Raidl G. (2003): Greedy heuristics and an evolutionary algorithm for the bounded-diameter minimum spanning tree problem. — Proc. ACM Symp. Applied Computing, pp. 747–752, New York, ACM Press.
[24] Knowles J. and Corne D. (2000): A new evolutionary approach to the degree constrained minimum spanning tree problem. — IEEE Trans. Evolut. Comput., Vol. 4, No. 2, pp. 125–134.
[25] Kruskal J.B. (1956): On the shortest spanning subtree of a graph and the traveling salesman problem.—Proc. Amer. Math. Soc., Vol. 7, No. 1, pp. 48–50.
[26] Lim A. and Xu Z. (2003): A fixed-length subset genetic algorithm for the p-median problem, In: Genetic and Evolutionary Computation – GECCO 2003, (E. Cantú-Paz et al., Eds.).—LNCS, Vol. 2724, pp. 1596–1597, Part II, Berlin: Springer.
[27] Lucasius C.B. and Kateman G. (1992): Towards solving subset selection problems with the aid of the genetic algorithm, In: Parallel Problem Solving from Nature II, (R. Männer and B. Manderick, Eds.).—Amsterdam: Elsevier.
[28] Narula G. and Ho C.A. (1989): Degree-constrained minimum spanning trees. — Comput. Oper. Res., Vol. 7, No. 4, pp. 39–49.
[29] Nešetil J., Milková E. and Nešetřilová H. (2001): Otakar Borůvka on minimum spanning tree problem. Translation of both the 1926 papers, comments, history. — Discr. Math., Vol. 233, No. 1–3, pp. 3–36.
[30] Palmer C.C. and Kershenbaum A. (1994): Representing trees in genetic algorithms. — Proc. 1st IEEE Conf. Evolutionary Computation, Orlando, FL, Vol. 1, pp. 379–384.
[31] Picciotto S. (1999): How to encode a tree. — Ph.D. thesis, University of California, San Diego.
[32] Prim R.C. (1957): Shortest connection networks and some generalizations. — Bell Syst. Tech. J., Vol. 36, No. 6, pp. 1389–1401.
[33] Prüfer H. (1918): Neuer beweis eines satzes über permutationen. — Arch. Math. Phys., Vol. 27, No. 3, pp. 142–144.
[34] Radcliffe N.J. (1993): Genetic set recombination, In: Foundations of Genetic Algorithms 2, (L.D. Whitley, Ed.).—San Mateo, CA: Morgan Kaufmann, pp. 203–219.
[35] Radcliffe N.J. and George F.A.W. (1993): A study in set recombination.— Proc. 5th Int. Conf. Genetic Algorithms, pp. 23–30, San Mateo, CA: Morgan Kaufmann.
[36] Raidl G.R. (2000): An efficient evolutionary algorithm for the degree-constrained minimum spanning tree problem. — Proc. Congress Evolutionary Computation CEC00, pp. 104–111, Piscataway, NJ: IEEE Press.
[37] Raidl G.R. and Julstrom B.A. (2003): Edge-sets: An effective evolutionary coding of spanning trees.—IEEE Trans. Evolut. Comput., Vol. 7, No. 3, pp. 225–239.
[38] Rothlauf F. (2002): Representations for Genetic and Evolutionary Algorithms.—Heidelberg: Physica-Verlag.
[39] Rothlauf F. and Goldberg D. (1999): Tree network design with genetic algorithms – An investigation in the locality of the Pruefernumber encoding. — Late Breaking Papers at the 1999 Genetic and Evolutionary Computation Conference, Orlando, FL, pp. 238–243.