Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2004_14_3_a6, author = {Lopes, H. S. and Weinert, W. R.}, title = {EGIPSYS: {An} enhanced gene expression programming approach for symbolic refression problems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {375--384}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a6/} }
TY - JOUR AU - Lopes, H. S. AU - Weinert, W. R. TI - EGIPSYS: An enhanced gene expression programming approach for symbolic refression problems JO - International Journal of Applied Mathematics and Computer Science PY - 2004 SP - 375 EP - 384 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a6/ LA - en ID - IJAMCS_2004_14_3_a6 ER -
%0 Journal Article %A Lopes, H. S. %A Weinert, W. R. %T EGIPSYS: An enhanced gene expression programming approach for symbolic refression problems %J International Journal of Applied Mathematics and Computer Science %D 2004 %P 375-384 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a6/ %G en %F IJAMCS_2004_14_3_a6
Lopes, H. S.; Weinert, W. R. EGIPSYS: An enhanced gene expression programming approach for symbolic refression problems. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 3, pp. 375-384. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a6/
[1] Ferreira C. (2001): Gene Expression Programming: A new adaptive algorithm for solving problems.—Complex Systems, Vol. 13, No. 2, pp. 87–129.
[2] Ferreira C. (2003): Function finding and a creation of numerical constants in gene expression programming, In: Advances in Soft Computing, Engineering Design and Manufacturing (J.M. Benitez, O. Cordon, F. Hoffmann and R. Roy, Eds.). —Springer-Verlag: Berlin, pp. 257–266.
[3] Fogel L.J., Owens A.J. and Walsh M.J. (1966): Artificial Intelligence Through Simulated Evolution. — New York: Wiley.
[4] Goldberg D.E. (1989): Genetic Algorithms in Search, Optimization and Machine Learning.—Reading: Addison-Wesley.
[5] Guidorzi R.P. and Rossi P. (1974): Identification of a power plant from normal operating records. — Automat. Contr. Theory Applic., Vol. 2, No. 1, pp. 63–67.
[6] Guidorzi R.P., Losito M.P. and Muratori T. (1980): On the last eigenvalue test in the structural identification of linear multivariable systems.—Proc. 5th Europ. Meeting Cybernetics and Systems Research, Vienna, pp. 217–228.
[7] Hoai N.X., McKay R.I., Essam D. and Chau R. (2002): Solving the symbolic regression problem with tree-adjunct grammar guided genetic programming: The comparative results. — Proc. 2002 Congress on Evolutionary Computation, Honolulu, USA, Vol. 2, pp. 1326–1331.
[8] Holland J.H. (1995): Adaptation in Natural and Artificial Systems.— Ann Arbor: The University of Michigan Press.
[9] Koza J.R. (1992): Genetic Programming: On the Programming of Computers by Means of Natural Selection. — Cambridge: MIT Press.
[10] Koza J.R. (1994): Genetic Programming II: Automatic Discovery of Reusable Programs. — Cambridge: MIT Press, 1994.
[11] McAvoy T.J., Hsu E. and Lowenthal S. (1972): Dynamics of pH in controlled stirred tank reactor. — Ind. Eng. Chem. Process Des. Develop., Vol. 11, No. 1, pp. 71–78.
[12] Moonen M., De Moor B., Vandenberghe L. and Vandewalle J. (1989): On- and off-line identification of linear state-space models.—Int. J. Contr., Vol. 49, No. 2, pp. 219–0232.
[13] Rechenberg I. (1973): Evolutionsstrategie: Optimierung Technischer Systemen nach Prinzipien der Biologischen Evolution.— Stuttgart: Frommann-Holzboog Verlag.
[14] Salhi A., Glaser H. and DeRoure D. (1998): Parallel implementation of a genetic-programming based tool for symbolic regression.—Inf. Process. Lett., Vol. 66, pp. 299–307.
[15] Schwefel H-P. (1977): Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie. — Basel: Birkhäuser.
[16] Shengwu X., Weinu W. and Feng L. (2003): A new genetic programming approach in symbolic regression. — Proc. 15th IEEE Int. Conf. Tools with Artificial Intelligence, Sacramento, USA, pp. 161–165.
[17] Weigend A.S., Huberman B.A. and Rumelhart D.E. (1992): Predicting sunspots and exchange rates with connectionist networks, In: Nonlinear Modeling and Forecasting (S. Eubank and M. Casdagli, Eds.). — Redwood City: Addison-Wesley, pp. 395–432.
[18] Zongker D., Punch B. and Rand B. (1998): Lilgp 1.1 User’s Manual.—Lansing: Michigan State University.