Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2004_14_3_a4, author = {Gravan, C. P. and Lahoz-Beltra, R.}, title = {Evolving morphogenetic fields in the zebra skin pattern based on {Turing's} morphogen hypothesis}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {351--361}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a4/} }
TY - JOUR AU - Gravan, C. P. AU - Lahoz-Beltra, R. TI - Evolving morphogenetic fields in the zebra skin pattern based on Turing's morphogen hypothesis JO - International Journal of Applied Mathematics and Computer Science PY - 2004 SP - 351 EP - 361 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a4/ LA - en ID - IJAMCS_2004_14_3_a4 ER -
%0 Journal Article %A Gravan, C. P. %A Lahoz-Beltra, R. %T Evolving morphogenetic fields in the zebra skin pattern based on Turing's morphogen hypothesis %J International Journal of Applied Mathematics and Computer Science %D 2004 %P 351-361 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a4/ %G en %F IJAMCS_2004_14_3_a4
Gravan, C. P.; Lahoz-Beltra, R. Evolving morphogenetic fields in the zebra skin pattern based on Turing's morphogen hypothesis. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 3, pp. 351-361. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a4/
[1] Ball P. (1999): The Self-Made Tapstry: Pattern Formation in Nature.—Oxford: Oxford University Press.
[2] Bard J.B.L. (1977): A unity underlying the different zebra striping patterns.- J. Zool. Vol. 183, pp. 527–539.
[3] Bard J.B.L. (1981): A model for generating aspects of zebra and other mammalian coat patterns. — J. Theoret. Biol., Vol. 93, pp. 363–385.
[4] Bentley K. (2002): Evolving asynchronous adaptive systems for an exploration of aesthetic pattern formation. — EASy M.Sc. thesis, Computer Science Department, University College of London.
[5] Blickle T. and Thiele L. (1995): A mathematical analysis of tournament selection. — Proc. 6-th Int. Conf. Genetic Algorithms, Pittsburgh, USA, pp. 9–16.
[6] Corno F., Sonza Reorda M. and Squillero G. (2000): Evolving cellular automata for self-testing hardware. — 3-rd Int. Conf. Evolvable Systems: From Biology to Hardware (ICES2000), Edinburgh, UK, pp. 31–39.
[7] Culik II K., Hurd L.P. and Yu S. (1990): Computation theoretic aspects of cellular automata. — Physica D, Vol. 45, pp. 357–378.
[8] Davis L. (Ed.). (1991): Handbook of Genetic Algorithms. — New York: Van Nostrand Reinhold.
[9] Fersht A. (1985): Enzyme Structure and Mechanism. — San Francisco, CA: W.H. Freeman.
[10] Gibson G. (2002): Developmental evolution: Getting robust about robustness. — Current Biol., Vol. 12, pp. R347–R349.
[11] Gierer A. and Meinhardt H. (1972): A theory of biological pattern formation. — Kybernetic, Vol. 12, pp. 30–39.
[12] Gillespie D.T. (1976): A general method for numerically simulating the stochastic time evolution of coupled chemical reactions.— J. Comp. Phys., Vol. 22, pp. 403–434.
[13] Gillespie D.T. (1977): Exact stochastic simulation of coupled chemical reactions. — J. Phys. Chem., Vol. 81, pp. 2340–2361.
[14] Goldberg D.E. (1989): Genetic Algorithms in Search, Optimization, and Machine Learning. — Reading, MA: Addison-Wesley.
[15] Hamahashi S. and Kitano H. (1999): Parameter optimization in hierarchical structures. — Proc. 5-th Europ. Conf. Artificial Life (ECAL), Lausanne, Switzerland, pp. 461–471.
[16] Inghe O. (1989): Genet and ramet survivorship under different mortality regimes — A cellular automata model. — J. Theor. Biol., Vol. 138, pp. 257–270.
[17] Kerszberg M. (1996): Accurate reading of morphogen concentrations by nuclear receptors: A formal model of complex transduction pathways.—J. Theor. Biol., Vol. 183, pp. 95–104.
[18] Kipling R. (1908): Just So Stories. — London: Macmillan.
[19] Kitano H. (1994): Evolution of metabolism for morphogenesis, In: Artificial Life IV. Proc. Workshop Artificial Life (R. Brooks and P. Maes, Eds.). — Cambridge, MA: MIT Press, pp. 49–58.
[20] Kitano H. (1995): A simple model of neurogenesis and cell differentiation based on evolutionary large-scale chaos. — Artificial Life, Vol. 2, pp. 79–99.
[21] Kondo A. and Asai R. (1995): A reaction-diffusion wave on the marine angelfish Pomacanthus. — Nature, Vol. 376, pp. 765–768.
[22] Lahoz-Beltra R. (1997): Molecular automata assembly: principles and simulation of bacterial membrane construction. —BioSyst., Vol. 44, pp. 209–229.
[23] Lahoz-Beltra R. (1998): Molecular automata modeling in structural biology.—Adv. Struct. Biol., Vol. 5, pp. 85–101.
[24] Lahoz-Beltra R. (2001): Evolving hardware as model of enzyme evolution.—BioSyst., Vol. 61, pp. 15–25.
[25] Lahoz-Beltra R., Recio Rincón C. and Di Paola V. (2002): Autómatas moleculares evolutivos: algoritmo SDS y sus aplicaciones. — Actas del Primer Congreso Español de Algoritmos Evolutivos y Bioinspirados (AEB02), pp. 333–340.
[26] Mitchell M., Hraber P.T. and Crutchfield J.T. (1993): Revisiting the edge of chaos: Evolving cellular automata to perform computations.—Complex Syst., Vol. 7, pp. 89–130.
[27] Murray J.D. (1981): A pre-patterns formation mechanism for animal coat markings.—J. Theor. Biol., Vol. 88, pp. 161–199.
[28] Murray J.D. (1989): Mathematical Biology. — New York: Springer.
[29] Nelson D.R. and Shnerb N.M. (1998): Non-Hermitian localization and population biology. — Physical Review E, Vol. 58, pp. 1383–1403.
[30] Omohundro S. (1984): Modelling cellular automata with partial differential equations.—Physica D, Vol. 10, pp. 128–134.
[31] Painter K.J., Maini P.K. and Othmer H.G. (1999): Stripe formation in juvenile Pomacanthus explained by a generalized Turing mechanism with chemotaxis. — Proc. Nat. Acad. Sci. USA, Vol. 96, pp. 5549–5554.
[32] Pearson J.E. (1993): Complex patterns in a simple system. — Science, Vol. 261, pp. 189–192.
[33] Price N.E. and Stevens L. (1996): Fundamentals of Enzymology. —London: Oxford University Press.
[34] Prusinkiewicz P. (1993): Modeling and visualization of biological structures. — Proc. Conf. Graphics Interface’93, Toronto, Canada, pp. 128–137.
[35] Rohlf T. and Bornholdt S. (2003): Self-organized pattern formation and noise-induced control from particle computation. — Available at: http://www.arxiv.org/abs/cond-mat/0312366.
[36] Savill N.J. and Hogeweg P. (1997): Modelling morphogenesis: From single cells to crawling slugs. — J. Theor. Biol., Vol. 184, pp. 229–235.
[37] Schreckenberg M., Schadschneider A., Nagel K. and Ito N. (1995): Discrete stochastic models for traffic flow. — Physical Rev. E, Vol. 51, pp. 2939.
[38] Shoji H. and Iwasa Y. (2003): Pattern selection and the direction of stripes in two-dimensional Turing systems for skin pattern formation of fishes.—Forma, Vol. 18, pp. 3–18.
[39] Srinivasan S., Rashka K.E. and Bier E. (2002): Creation of a sog morphogen gradient in Drosophila embryo. — Developmental Cell, Vol. 2, pp. 91–101.
[40] The I. and Perrimon N. (2000): Morphogen diffusion: The case of the Wingless protein. — Nature Cell Biol., Vol. 2, pp. 79–82.
[41] Toffoli T. (1984): Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics. — Physica D, Vol. 10, pp. 117–127.
[42] Toffoli T. and Margolus N. (1987): Cellular Automata Machines. — Cambridge, MA: The MIT Press.
[43] Turing A. (1952): The chemical basis of morphogenesis.—Philos. Trans. Roy. Soc. London B, Vol. 237, pp. 37–52.
[44] Varea A., Aragon J.L. and Barrui R.A. (1999): Turing patterns on a sphere. — Physical Review E, Vol. 60, No. 4, pp. 4588–4592.
[45] Weimar J.R. (1997): Cellular automata for reaction-diffusion systems. — Parallel Comput., Vol. 23, pp. 1699–1715.
[46] Werfel J., Mitchell M. Crutchfield J.P. (2000): Resource sharing and coevolution in evolving cellular automata. — IEEE Trans. Evolut. Comput., Vol. 4, pp. 388–393.
[47] Wolfram S. (1983): Statistical mechanics of cellular automata. —Rev. Mod. Phys., Vol. 55, No. 3, pp. 601–644.
[48] Wolfram S. (1984a): Cellular automata as models of complexity. —Nature, Vol. 311, pp. 419–424.
[49] Wolfram S. (1984b): Universality and complexity in cellular automata.— Physica D, Vol. 10, pp. 1–35.
[50] Xia Y. and Levitt M. (2002): Roles of mutation and recombination in the evolution of protein thermodynamics. — Proc. Nat. Acad. Sci., Vol. 99, pp. 10382–10387.
[51] Young D.A. (1984): A local activator-inhibitor model of vertebrate skin patterns.—Math. Biosci., Vol. 72, pp. 51–58.