Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2004_14_3_a2, author = {Alba, E. and Luna, F. and Nebro, A. J.}, title = {Advances in parallel heterogeneous genetic algorithms for continuous optimization}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {317--333}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a2/} }
TY - JOUR AU - Alba, E. AU - Luna, F. AU - Nebro, A. J. TI - Advances in parallel heterogeneous genetic algorithms for continuous optimization JO - International Journal of Applied Mathematics and Computer Science PY - 2004 SP - 317 EP - 333 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a2/ LA - en ID - IJAMCS_2004_14_3_a2 ER -
%0 Journal Article %A Alba, E. %A Luna, F. %A Nebro, A. J. %T Advances in parallel heterogeneous genetic algorithms for continuous optimization %J International Journal of Applied Mathematics and Computer Science %D 2004 %P 317-333 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a2/ %G en %F IJAMCS_2004_14_3_a2
Alba, E.; Luna, F.; Nebro, A. J. Advances in parallel heterogeneous genetic algorithms for continuous optimization. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 3, pp. 317-333. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a2/
[1] Adamidis P. and Petridis V. (1996): Co-operating populations with different evolution behaviors.—Proc. 3rd IEEE Conf. Evolutionary Computation, New York, pp. 188–191.
[2] Adamidis P. and Petridis V. (2002): On modelling evolutionary algorithm implementations through co-operating populations, In: Parallel Problem Solving from Nature (PPSN VII), (J.J. Merelo Guervós, P. Adamidis, H.-G. Beyer, J.-L. Fernández-Villacañas and H.-P. Schwefel, Eds.). — Granada, Spain: Springer, pp. 321–330.
[3] Aickelin U. and Bull L. (2002): Partnering strategies for fitness evaluation in a pyramidal evolutionary algorithm.—Proc. Genetic and Evolutionary Comput. Conf. GECCO’02, New York, pp. 263–270.
[4] Alba E., Luna E. and Nebro A.J. (2003): Parallel heterogeneous genetic algorithms for continuous optimization.—Int. Parallel and Distributed Proces. Symp. (IPDPS-NIDISC’03), Nice, France, p. 147.
[5] Alba E., Luna F., Nebro A.J. and Troya J.M. (2004): Parallel heterogeneous genetic algorithms for continuous optimization.— Parallel Comput., (to appear).
[6] Alba E., Nebro A.J. and Troya J.M. (2002): Heterogeneous computing and parallel genetic algorithms.—J. Parall, Distrib. Comput., Vol. 62, pp. 1362–1385.
[7] Alba E. and Tomassini M. 2002): Parallelism and evolutionary algorithms.—IEEE Trans. Evolut. Comput., Vol. 6, No. 5, pp. 443–462.
[8] Alba E. and Troya J.M. (1999): A survey of parallel distributed genetic algorithms. — Complexity, Vol. 4, No. 4, pp. 31–52.
[9] Alba E. and Troya J.M. (2000): Influence of the migration policy in parallel distributed GAs with structured and panmictic populations.—Appl. Intell., Vol. 12, No. 3, pp. 163–181.
[10] Alba E. and Troya J.M. (2001): Analyzing synchronous and asynchronous parallel distributed genetic algorithms. — Future Generat. Comput. Syst., Vol. 17, No. 4, pp. 451–465.
[11] Arenas M.G., Collet P., Eiben A.E., Jelasity M., Merelo J.J., Paechter B., Preub M. and Schoenauer M. (2002): A framework for distributed evolutionary algorithms, In: Parallel Problem Solving from Nature (PPSN VII) (J.J. Merelo Guervós, P. Adamidis, H.-G. Beyer, J.-L. Fernández-Villacañas and H.-P. Schwefel, Eds.). — Granada, Spain: Springer, pp. 665–675.
[12] Bäck T. (1992): Self-Adaptation in Genetic Algorithms.—Proc. 1st Europ. Conf. Artificial Life, Cambridge, MA, pp. 263–271.
[13] Bäck T. (1996): Evolutionary Algorithms in Theory and Practice.— Oxford: Oxford University Press.
[14] Bäck T., Fogel D.B. and Michalewicz Z. (1997): Handbook of Evolutionary Computation. — Oxford: Oxford University Press.
[15] Baker J.E. (1985): Adaptive selection methods for genetic algorithms. — Proc. 1st Int. Conf. Genetic Algorithms Appl., Hillsdale, NJ, pp. 101–111.
[16] Baker J.E. (1987): Reducing bias and inefficiency in the selection algorithm.—Proc. 2nd Int. Conf. Genetic Algorithms Appl., Hillsdale, NJ, pp. 14–21.
[17] Cantú-Paz E. (1995): A summary of research on parallel genetic algorithms. — Tech. Rep. No. 95007, Univ. Illinois, Urbana-Champaign, Illinois GA Laboratory.
[18] de Jong K.A. (1975): An analysis of the behavior of a class of genetic adaptive Systems.—Ph.D. thesis, Univ. Michigan, Ann Arbor.
[19] Eshelman L.J., Mathias K.E. and Schaffer J.D. (1997): Convergence controlled variation, In: Foundations of Genetic Algorithms 4 (R. Belew and M. Vose, Eds.). — San Mateo, CA: Morgan Kaufmann, pp. 203–224.
[20] Goldberg D.E. (1989): Genetic Algorithms in Search, Optimization and Machine Learning. — Boston: Addison-Wesley.
[21] Goldberg D.E., Kargupta H., Horn J. and Cantú-Paz E. (1995): Critical deme size for serial and parallel genetic algorithms. — Tech. Rep. No. 95002, Univ. Illinois, Urbana-Campaign, Illinois Genetic Algorithms Laboratory.
[22] Griewangk A.O. (1981): Generalized descent of global optimization. — J. Optim. Theory Appl., Vol. 34, No. 3, pp. 11–39.
[23] Herrera F. and Lozano M. (1997): Heterogeneous distributed genetic algorithms based on the crossover operator.—Proc. 2nd IEE/IEEE Int. Conf. Genetic Algorithms Eng. Syst.: Innovations Appl., Glasgow, UK, pp. 203–208.
[24] Herrera F. and Lozano M. (2000): Gradual distributed realcoded genetic algorithms. — IEEE Trans. Evolut. Comput., Vol. 4, No. 1, pp. 43–63.
[25] Herrera F., Lozano M. and Moraga C. (1998): Hybrid distributed real-coded genetic algorithms, In: Parallel Problem Solving from Nature (PPSN V) (A.E. Eiben, T. Back, M. Schoenauer and H-P. Schwefel, Eds.). — Amsterdam: Springer, pp. 879–888.
[26] Herrera F., Lozano M. and Verdegay J.L. (1995): Fuzzy connective based crossover operators to model genetic algorithms population diversity. — Tech. Rep. No. DECSAI-95110, University of Granada, 18071 Granada, Spain.
[27] Hinterding R., Michalewicz Z. and Peachey T.C. (1996): Self-adaptive genetic algorithm for numeric functions, In: Parallel Problem Solving from Nature (PPSN IV) (H.-M. Voigt,W. Ebeling, I. Rechenberger and H.-P. Schwefel, Eds.). —Berlin: Springer, pp. 420–429.
[28] Hiroyasu T., Miki M. and Negami M. (1999): Distributed genetic algorithms with randomized migration rate. — Proc. IEEE Conf. Systems, Man and Cybernetics, Tokyo, Japan, Vol. 1, pp. 689–694.
[29] Holland J.H. (1997): Adaptation in natural and artificial systems. — Ph.D. thesis, Univ. Michigan, Ann Arbor.
[30] Hu J.J. and Goodman E.D. (2002): The hierarchical fair competition (HFC) model for parallel evolutionary algorithms. — Proc. Congress Evolutionary Computation, CEC2002, Honolulu, USA, pp. 49–54.
[31] Lin S.-L., Punch III W.F. and Goodman E.D. (1994): Coarse-grain parallel genetic algorithms: Categorization and new approach. — Proc. 6th IEEE Symp. Parallel and Distributed Processing, Dallas, USA, , pp. 28–37.
[32] Manderick B. and Spiessens P. (1989): Fine-grained parallel genetic algorithms. — Proc. 3rd Int. Conf. Genetic Algorithms, Virginia, USA, pp. 428–433.
[33] Michalewicz Z. (1992): Genetic Algorithms + Data Structures = Evolution Programs.—Berlin: Springer.
[34] Miki M., Hiroyasu T., Kaneko M. and Hatanaka K. (1999): A parallel genetic algorithm with distributed environment scheme.—Proc. IEEE Conf. Systems, Man and Cybernetics, Tokyo, Japan, pp. 695–700.
[35] Mühlenbein H., Schomisch M. and Born J. (1991): The parallel genetic algorithm as function optimizer. — Proc. 4th Int. Conf. Genetic Algorihtms, San Mateo, CA, pp. 271–278.
[36] Oh S.-K, Lee C.-Y. and Lee J.-J. A new distributed evolutionary algorithm for optimization in nonstationary environments. — Proc. Congr. Evolutionary Computation, Honolulu, USA, pp. 378–383.
[37] Potts J.C., Giddens T.D. and Yadav S.B. (1994): The development and evaluation of an improved genetic algorithm based on migration and artificial selection.—IEEE Trans. Syst. Man Cybern., Vol. 24, No. 1, pp. 73–86.
[38] Schlierkamp-Voosen D. and Mühlenbein H. (1994): Strategy adaptation by competing subpopulations, In: Parallel Problem Solving from Nature (PPSN III) (Y. Davidor, H.-P. Schwefel and R. Männer, Eds.). — Berlin: Springer, pp. 199–208.
[39] Schlierkamp-Voosen D. and Mühlenbein H. (1996): Adaptation of population sizes by competing subpopulations. — Proc. Int. Conf. Evolutionary Computation, Nagoya, Japan, pp. 199–208.
[40] Schnecke V. and Vornberger O. (1996): An adaptive parallel algorithm for VLSI-layout optimization, In: Parallel Problem Solving from Nature (PPSN IV) (H.-M. Voigt, W. Ebeling, I. Rechenberger and H.-P. Schwefel, Eds.). — Berlin: Springer, pp. 22–27.
[41] Schwefel H.-P. (1981): Numerical Optimization of Computer Models.—Chichester: Wiley.
[42] Sefrioui M. and Périaoux J. (2000): A hierarchical genetic algorithm using multiple models for optimization, In: Parallel Problem Solving from Nature (PPSN VI) (M. Schoenauer, Kalyanmoy Deb, G. Rudolph, X. Yao, E. Lutton, J.J. Merelo and H.-P. Schwefel, Eds.). — Paris: Springer, pp. 879–888.
[43] Storn R. and Price K. (1995): Differential evolution – A simple efficient adaptive scheme for global optimization over continuous spaces.—Tech. Rep. No. 95-012, Int. Compt. Sci. Inst., Berkeley, CA.
[44] Tierra Home Page: www.hip.atr.co.jp/_ray/tierra/tierra.html.
[45] Tanese R. (1989): Distributed genetic algorithms. — Proc. 3rd Int. Conf. Genetic Algorithms, Virginia, USA, pp. 434–439.
[46] Töorn A. and Antanas Ž. (1989): Global Optimization. — Berlin: Springer.
[47] Tsutsui S. and Fujimoto Y. (1993): Forking genetic algorithm with blocking and shrinking modes (fGA). — Proc. 5th Int. Conf. Genetic Algorithms, Urbana-Champaign, USA, pp. 206–213.
[48] Venkateswaran R., Obradovi´c Z. and Raghavendra C.S. (1996): Cooperative genetic algorithm for optimization problems in distributed computer systems. — Proc. 2nd Online Workshop Evolutionary Computation, Nagoya, Japan, pp. 49–52.
[49] Whitley D., Beveridge R., Graves C. and Mathias K. (1995): Test driving three 1995 genetic algorithms: New test functions and geometric matching. — J. Heuristics, Vol. 1, pp. 77–104.
[50] Yi W., Liu Q. and He Y. (2000): Dynamic distributed genetic algorithms. — Proc. Congress Evolutionary Computation, La Jolla, USA, pp. 1132–1136.