Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2004_14_3_a1, author = {Obuchowicz, A. and Pr\k{e}tki, P.}, title = {Phenotypic evolution with a mutation based on symmetric alpha-stable distributions}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {289--316}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a1/} }
TY - JOUR AU - Obuchowicz, A. AU - Prętki, P. TI - Phenotypic evolution with a mutation based on symmetric alpha-stable distributions JO - International Journal of Applied Mathematics and Computer Science PY - 2004 SP - 289 EP - 316 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a1/ LA - en ID - IJAMCS_2004_14_3_a1 ER -
%0 Journal Article %A Obuchowicz, A. %A Prętki, P. %T Phenotypic evolution with a mutation based on symmetric alpha-stable distributions %J International Journal of Applied Mathematics and Computer Science %D 2004 %P 289-316 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a1/ %G en %F IJAMCS_2004_14_3_a1
Obuchowicz, A.; Prętki, P. Phenotypic evolution with a mutation based on symmetric alpha-stable distributions. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 3, pp. 289-316. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a1/
[1] Bäck T. and Schwefel H.-P. (1993): An overview of evolutionary computation.—Evol. Comput., Vol. 1, No. 1, pp. 1–23.
[2] Bäck T., Fogel D.B. and Michalewicz Z. (Eds.) (1997): Handbook of Evolutionary Computation. — Oxford: Oxford University Press, NY.
[3] Chambers J.M., Mallows C.L. and Stuck B.W. (1976): A method for simulating stable random variables.—J. Amer. Statist. Assoc., Vol. 71, No. 354, pp. 340–344.
[4] Fang K.-T., Kotz S. and Ng S. (1990): Symmetric Multivariate and Related Distributions.—London: Chapman and Hall.
[5] Fogel L.J., Owens A.J. and Walsh A.J. (1966): Artificial Intelligence through Simulated Evolution.—New York: Wiley.
[6] Fogel D.B., Fogel L.J. and Atmar J.W. (1991): Meta-evolutionary programming. — Proc. 25th Asilomar Conf. Signals, Systems Computers, San Jose, pp. 540–545.
[7] Fogel D.B. (1992): An analysis of evolutionary programming. —Proc. 1st Annual Conf. Evolutionary Programming, LA Jolla, CA: Evolutionary Programming Society, pp. 43–51.
[8] Fogel D.B. (1994): An introduction to simulated evolutionary computation. — IEEE Trans. Neural Netw., Vol. 5, No. 1, pp. 3–14.
[9] Galar R. (1985): Handicapped individua in evolutionary processes. — Biol. Cybern., Vol. 51, pp. 1–9.
[10] Galar R. (1989): Evolutionary search with soft selection. — Biol. Cybern., Vol. 60, pp. 357–364.
[11] Gutowski M. (2001): Lévy flights as an underlying mechanism for a global optimization algorithm. — Proc. 5th Conf. Evolutionary Algorithms and Global Optimization, Jastrzębia Góra, Poland, pp. 79–86.
[12] Kanter M. (1975): Stable densities with change of scale and total variation inqualities. — Ann. Probab., Vol. 3, No. 4, pp. 687–707.
[13] Kappler C. (1996): Are evolutionary algorithms improved by large mutation, In: Problem Solving from Nature (PPSN) IV (H.-M. Voigt, W. Ebeling, I. Rechenberg and H.-P. Schwefel, Eds.).—Berlin: Springer, pp. 388–397.
[14] Lévy C. (1925): Calcul des Probabilités.—Paris: Gauthier Villars.
[15] Michalewicz Z. (1996): Genetic Algorithms + Data Structures = Evolution Programs.—Berlin: Springer.
[16] Nolan J.P. (2003): Stable Distributions. Models for Heavy Tailed Data.—Berlin: Springer.
[17] Obuchowicz A. (2001a): On the true nature of the multidimensional Gaussian mutation. — In: Artificial Neural Networks and Genetic Algorithms (V. Kurkova, N.C. Steel, R. Neruda and M. Karny, Eds.). — Vienna: Springer, pp.248–251.
[18] Obuchowicz A. (2001b): Mutli-dimensional Gaussian and Cauchy mutations, In: Intelligent Information Systems (M. Kłopotek, M. Michalewicz, and S.T. Wierzcho´n, Eds.). — Heidelberg: Physica–Verlag, pp. 133–142.
[19] Obuchowicz A. (2003a): Population in an ecological niche: Simulation of natural exploration. — Bull. Polish Acad. Sci., Tech. Sci., Vol. 51, No. 1, pp. 59–104.
[20] Obuchowicz A. (2003b): Multidimensional mutations in evolutionary algorithms based on real-valued representation.— Int. J. Syst. Sci., Vol. 34, No. 7, pp. 469–483.
[21] Obuchowicz A. (2003c): Evolutionary Algorithms in Global Optimization and Dynamic System Diagnosis. — Zielona Góra: Lubuskie Scientific Society.
[22] Rechenberg I. (1965): Cybernetic solution path of an experimental problem. — Roy. Aircr. Establ., Libr. Transl. 1122, Farnborough, Hants., UK.
[23] Rudolph G. (1997): Local convergence rates of simple evolutionary algorithms with Cauchy mutations.—IEEE Trans. Evolut. Comput., Vol. 1, No. 4, pp. 249–258.
[24] Schwefel H.-P. (1981): Numerical Optimization of Computer Models.—Chichester: Wiley.
[25] Samorodnitsky G. and Taqqu M.S. (1994): Stable Non-Gaussian Random Processes.—New York: Chapman Hall.
[26] Shu A. and Hartley R. (1987): Fast simulated annaeling. — Phys. Lett. A, Vol. 122, Nos. 3/4, pp. 605–614.
[27] Weron R. (1996): Correction to: On the Chambers-Mallows-Stuck method for simulating skewed stable random variables. — Res. Rep., Wrocław University of Technology, Poland.
[28] Weron R. (2001): Lévy-stable distributions revisited: tail index > 2 does not exclude the Lévy-stable regime. — Int. J. Modern Phys. C, Vol. 12, No. 2, pp. 209–223.
[29] Yao X. and Liu Y. (1996): Fast evolutionary programming, In: Evolutionary Programming V: Proc. 5th Annual Conference on Evolutionary Programming (L.J. Fogel, P.J. Angeline, and T. Bäck, Eds.). — Cambridge, MA: MIT Press, pp. 419–429.
[30] Yao X. and Liu Y. (1997): Fast evolutionary strategies.—Contr. Cybern., Vol. 26, No. 3, pp. 467–496.
[31] Yao X. and Liu Y. (1999): Evolutionary programming made faster. — IEEE Trans. Evolut. Comput., Vol. 3, No. 2, pp. 82–102.
[32] Zolotariev A. (1986): One-Dimensional Stable Distributions.— Providence: American Mathematical Society.