Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2004_14_2_a11, author = {San, O. M. and Huynh, V. N. and Nakamori, Y.}, title = {An alternative extension of the k-means algorithm for clustering categorical data}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {241--247}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a11/} }
TY - JOUR AU - San, O. M. AU - Huynh, V. N. AU - Nakamori, Y. TI - An alternative extension of the k-means algorithm for clustering categorical data JO - International Journal of Applied Mathematics and Computer Science PY - 2004 SP - 241 EP - 247 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a11/ LA - en ID - IJAMCS_2004_14_2_a11 ER -
%0 Journal Article %A San, O. M. %A Huynh, V. N. %A Nakamori, Y. %T An alternative extension of the k-means algorithm for clustering categorical data %J International Journal of Applied Mathematics and Computer Science %D 2004 %P 241-247 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a11/ %G en %F IJAMCS_2004_14_2_a11
San, O. M.; Huynh, V. N.; Nakamori, Y. An alternative extension of the k-means algorithm for clustering categorical data. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 2, pp. 241-247. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a11/
[1] Anderberg M.R. (1973): Cluster Analysis for Applications. — New York: Academic Press.
[2] Ball G.H. and Hall D.J. (1967): A clustering technique for summarizing multivariate data.—Behav. Sci., Vol. 12, No. 2, pp. 153–155.
[3] Bezdek J.C. (1980): A convergence theorem for the fuzzy ISODATA clustering algorithms.—IEEE Trans. Pattern Anal. Mach. Intell., Vol. 2, No. 1, pp. 1–8.
[4] Blake C.L. and Merz C.J. (1998): UCI Repository of machine learning databases. — Available at: http://www.ics.uci.edu/~mlearn/MLRepository.html, Irvine, CA: University of California, Department of Information and Computer Science.
[5] Cox D. (1957): Note on grouping. — J. Amer. Stat. Assoc., Vol. 52, pp. 543–547.
[6] Fisher D.H. (1987): Knowledge acquisition via incremental conceptual clustering. — Mach. Learn., Vol. 2, No. 2, pp. 139–172.
[7] Ganti V., Gehrke J. and Ramakrishnan R. (1999): CATUS - Clustering categorical data using summaries.—Proc. Int. Conf. Knowledge Discovery and Data Mining, San Diego, USA, pp. 73–83.
[8] Gibson D., Kleinberg J. and Raghavan P. (1998) Clustering categorical data: An approach based on dynamic systems. Proc. 24-th Int. Conf. Very Large Databases, New York, pp. 311–323.
[9] Gowda K.C. and Diday E. (1991): Symbolic clustering using a new dissimilarity measure. — Pattern Recogn., Vol. 24, No. 6, pp. 567–578.
[10] Guha S., Rastogi R. and Shim K. (2000): ROCK: A robust clustering algorithm for categorical attributes. — Inf. Syst., Vol. 25, No. 5, pp. 345–366.
[11] Han J. and Kamber M. (2001): Data Mining: Concepts and Techniques. — San Francisco: Morgan Kaufmann Publishers.
[12] Hathaway R.J. and Bezdek J.C. (1986): Local convergence of the c-means algorithms. — Pattern Recogn., Vol. 19, No. 6, pp. 477–480.
[13] Huang Z. (1997): Clustering large data sets with mixed numeric and categorical values, In: KDD: Techniques and Applications (H. Lu, H. Motoda and H. Luu, Eds.). — Singapore: World Scientific, pp. 21–34.
[14] Huang Z. (1998): Extensions to the k-means algorithm for clustering large data sets with categorical values. — Data Mining Knowl. Discov., Vol. 2, No. 2, pp. 283–304.
[15] Huang Z. and Ng M.K. (1999): A fuzzy k-modes algorithm for clustering categorical data. — IEEE Trans. Fuzzy Syst., Vol. 7, No. 4, pp. 446–452.
[16] Ismail M.A. and Selim S.Z. (1986): Fuzzy c-means: Optimality of solutions and effective termination of the problem. — Pattern Recogn., Vol. 19, No. 6, pp. 481–485.
[17] Jain A.K. and Dubes R.C. (1988): Algorithms for Clustering Data.—Englewood Cliffs: Prentice Hall.
[18] Kaufman L. and Rousseeuw P.J. (1990): Finding Groups in Data.—New York: Wiley.
[19] MacQueen J.B. (1967): Some methods for classification and analysis of multivariate observations.—Proc. 5-th Symp. Mathematical Statistics and Probability, Berkelely, CA, Vol. 1, pp. 281–297.
[20] Michalski R.S. and Stepp R.E. (1983): Automated construction of classifications: Conceptual clustering versus numerical taxonomy. — IEEE Trans. Pattern Anal. Mach. Intell., Vol. PAMI-5, No. 4, pp. 396–410.
[21] Ralambondrainy H. (1995): A conceptual version of the k-means algorithm. — Pattern Recogn. Lett., Vol. 15, No. 11, pp. 1147–1157.
[22] Ruspini E.R. (1969): A new approach to clustering. — Inf. Contr., Vol. 15, No. 1, pp. 22–32.
[23] Selim S.Z. and Ismail M.A. (1984): k-Means-type algorithms: A generalized convergence theorem and characterization of local optimality. — IEEE Trans. Pattern Anal. Mach. Intell., Vol. PAMI-6, No. 1, pp. 81–87.