Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2004_14_2_a10, author = {Mustafa, G. and Chen, F. and Huang, Z.}, title = {Ternary wavelets and their applications to signal compression}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {233--240}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a10/} }
TY - JOUR AU - Mustafa, G. AU - Chen, F. AU - Huang, Z. TI - Ternary wavelets and their applications to signal compression JO - International Journal of Applied Mathematics and Computer Science PY - 2004 SP - 233 EP - 240 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a10/ LA - en ID - IJAMCS_2004_14_2_a10 ER -
%0 Journal Article %A Mustafa, G. %A Chen, F. %A Huang, Z. %T Ternary wavelets and their applications to signal compression %J International Journal of Applied Mathematics and Computer Science %D 2004 %P 233-240 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a10/ %G en %F IJAMCS_2004_14_2_a10
Mustafa, G.; Chen, F.; Huang, Z. Ternary wavelets and their applications to signal compression. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 2, pp. 233-240. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a10/
[1] Andersson L., Hall N., Jawerth B. and Peters G. (1993): Wavelets on closed subsets of the real line, In: Recent Advances in Wavelet Analysis (L.L. Shumaker and G. Webb, Eds.).—New York: Academic Press, pp. 1–61.
[2] Daubechies I. (1988): Orthogonal bases of compactly supported wavelets. — Comm. Pure Appl. Math., Vol. 41, No. 7, pp. 909–996.
[3] DeVore R., Jawerth B. and Lucier B. (1992): Image compression through wavelet transform coding.—IEEE Trans. Inf. Theory, Vol. 38, No. 2, pp. 719–746.
[4] Dubuc S. (1986): Interpolation through an iterative scheme. — J. Math. Anal. Appl., Vol. 114, No. 1, pp. 185–204.
[5] Dyn N., Levin D. and Gregory J. (1987): A four-point interpolatory subdivision scheme for curve design. — Comput. Aided Geom. Design, Vol. 4, No. 4, pp. 257–268.
[6] Hassan M.F. and Dodgson N.A., (2001). Ternary and three-point univariate subdivision schemes. — Tech. Rep. No. 520, University of Cambridge, Computer Laboratory. Available at http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-520.pdf.
[7] Hassan M.F., Ivrissimitzis I.P., Dodgson N.A. and Sabin M.A. (2002): An interpolating 4-point C2 ternary stationary subdivision scheme. — Comput. Aided Geom. Design, Vol. 19, No. 1, pp. 1–18.
[8] Liu Z., Gortler S.J. and Cohen M.F. (1994): Hierarchical space-time control. — Computer Graphics Annual Conference Series, pp. 35-42.
[9] Lounsbery M., DeRose T.D. and Warren J. (1997): Multiresolution analysis for surfaces of arbitrary topological type. — ACM Trans. Graphics, Vol. 16, No. 1, pp. 34–73.
[10] Mallat S. (1989): A theory for multiresolution signal decomposition: The wavelet representation.—IEEE Trans. Pattern Anal. Mach. Intell., Vol. 11, No. 7, pp. 674–693.
[11] Stollnitz E.J., DeRose T.D. and Salesin D.H. (1996). Wavelets for Computer Graphics: Theory and Applications. — San Francisco: Morgan Kaufmann.
[12] Wei G. and Chen F. (2002): Four-point wavelets and their applications.— J. Comp. Sci. Tech., Vol. 17, No. 4, pp. 473–480.
[13] Weissman A. (1990): A 6-point interpolatory subdivision scheme for curve design. — M. Sc. Thesis, Tel-Aviv University, Israel.