Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2004_14_2_a1, author = {Waniewski, J. and J\k{e}druch, W. and \.Zo{\l}ek, N. S.}, title = {Dynamic stability and spatial heterogeneity in the individual-based modelling of a {Lotka-Volterra} gas}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {139--147}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a1/} }
TY - JOUR AU - Waniewski, J. AU - Jędruch, W. AU - Żołek, N. S. TI - Dynamic stability and spatial heterogeneity in the individual-based modelling of a Lotka-Volterra gas JO - International Journal of Applied Mathematics and Computer Science PY - 2004 SP - 139 EP - 147 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a1/ LA - en ID - IJAMCS_2004_14_2_a1 ER -
%0 Journal Article %A Waniewski, J. %A Jędruch, W. %A Żołek, N. S. %T Dynamic stability and spatial heterogeneity in the individual-based modelling of a Lotka-Volterra gas %J International Journal of Applied Mathematics and Computer Science %D 2004 %P 139-147 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a1/ %G en %F IJAMCS_2004_14_2_a1
Waniewski, J.; Jędruch, W.; Żołek, N. S. Dynamic stability and spatial heterogeneity in the individual-based modelling of a Lotka-Volterra gas. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 2, pp. 139-147. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a1/
[1] Adami C. (1998): Introduction to Artificial Life. — New York: Springer.
[2] Boccara N., Cheong K. and Oram M. (1994): A probabilistic automata network epidemic model with births and deaths exhibiting cyclic behaviour. — J. Phys. A: Math. Gen., Vol. 27, pp. 1585–1597.
[3] Boccara N., Roblin O. and Roger M. (1994): Automata network predator-prey model with pursuit and evasion. — Phys. Rev. E 50, Vol. 50, No. 6, pp. 4531–4541.
[4] McCauley E.,Wilson W.G. and de Roos A.M. (1993): Dynamics of age-structured and spatially structured predator-prey interactions: Individual-based models and population-level formulations. — Am. Naturalist, Vol. 142, No. 3, pp. 412–442.
[5] McCauley E., Wilson W.G. and de Roos A.M. (1996): Dynamics of age-structured predator-prey populations in space: Asymmetrical effects of mobility in juvenile and adult predators.—OIKOS, Vol. 76, pp. 485–497.
[6] Durrett R. and Levin S. (1994): The importance of being discrete (and spatial).—Theor. Popul. Biol., Vol. 46, pp. 363–394.
[7] Lipowski A. (1999): Oscillatory behavior in a lattice prey-predator system. — Phys. Rev. ER 60, No. 5, pp. 5179–5184.
[8] Lipowski A. and Lipowska D. (2000): Nonequilibrium phase transition in a lattice prey-predator system. — Physica A 276, pp. 456–464.
[9] Poland D. (1989): The effect of clustering on the Lotka-Volterra model.—Physica D 35, pp. 148–166.
[10] Rand D.A. (1994): Measuring and characterizing spatial patterns, dynamics and chaos in spatially extended dynamical systems and ecologies. — Phil. Trans. R. Soc. Lond. A 348, pp. 497–514.
[11] Rand D.A., Keeling M. and Wilson H.B. (1995): Invasion, stability and evolution to criticality in spatially extended, artificial host-pathogen ecologies. — Proc. R. Soc. Lond. B 259, pp. 55–63.
[12] Rand D.A. and Wilson H.B. (1995): Using spatio-temporal chaos and intermediate scale determinism to quantify spatially extended ecosystems. — Proc. R. Soc. Lond. B 259, pp. 111–117.
[13] Ranta E. and Kaitala V. (1997): Travelling waves in vole population dynamics.—Nature 390, pp. 456.
[14] Ranta E., Kaitala V. and Lundberg P. (1997): The spatial dimension in population fluctuations.—Science 278, pp. 1621–1623.
[15] Renshaw E. (1991): Modeling Biological Populations in Space and Time. — Cambridge: Cambridge University Press.
[16] De Roos A.M., McCauley E. and Wilson W.G. (1991): Mobility versus density-limited predator-prey dynamics on different spatial scales.—Proc. R. Soc. Lond. B 246, pp. 117–122.
[17] De Roos A.M., McCauley E. and Wilson W.G. (1998): Pattern formation and the spatial scale of interaction between predators and their prey.—Theor. Popul. Biol. 53, No. 2, pp. 108–130.
[18] Satulovsky J.E. (1996): Lattice Lotka-Volterra models and negative cross-diffusion. — J. Theor. Biol. 183, pp. 381–389.
[19] Satulovsky J.E. and Tome T. (1994): Stochastic lattice gas model for a predator-prey system. — Phys. Rev. E 49, No. 6, pp. 5073–5079.
[20] Satulovsky J.E. and Tome T. (1997): Spatial instabilities and local oscillations in a lattice gas Lotka-Volterra model.— J. Math. Biol. 35, pp. 344–358.
[21] Tainaka K. and Fukazawa S. (1992): Spatial pattern in a chemical reaction system: prey and predator in the position-fixed limit.—J. Phys. Soc. Jpn. 61, No. 6, pp. 1891–1894.
[22] Waniewski J. and JędruchW. (1999): Individual based modeling and parameter estimation for a Lotka-Volterra system. — Math. Biosci. 157, pp. 23–36.
[23] Waniewski J. and Jędruch W. (2000): Spatial heterogenity and local oscillation phase drifts in individual-based simulations of a prey-predator system. — Int. J. Appl. Math. Comp. Sci., Vol. 10, No. 1, pp. 175–192.
[24] Wiegand T., Moloney K.A., Naves J. and Knauer F. (1999): Finding the missing link between landscape structure and population dynamics: A spatially explicit perspective. — Am. Nat., Vol. 154, No. 6, pp. 605–627.
[25] Wilson W.G., McCauley E. and de Roos A.M. (1995): Effect of dimensionality on Lotka-Volterra predator-prey dynamics: individual based simulation results. — Bull. Math. Biol., 57, No. 4, pp. 507–526.
[26] Wilson W.G., de Roos A.M. and McCauley E. (1993): Spatial instabilities within the diffusive Lotka-Volterra system: Individual-based simulation results.—Theor. Popul. Biol. 43, pp. 91–127.