Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2004_14_1_a6, author = {{\L}\k{e}ski, J.}, title = {Kernel {Ho-Kashyap} classifier with generalization control}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {53--61}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a6/} }
TY - JOUR AU - Łęski, J. TI - Kernel Ho-Kashyap classifier with generalization control JO - International Journal of Applied Mathematics and Computer Science PY - 2004 SP - 53 EP - 61 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a6/ LA - en ID - IJAMCS_2004_14_1_a6 ER -
Łęski, J. Kernel Ho-Kashyap classifier with generalization control. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 1, pp. 53-61. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a6/
[1] Baudat G. and Anouar F. (2000): Generalized discriminant analysis using a kernel approach. — Neural Comput., Vol. 12, No. 10, pp. 2385–2404.
[2] Boser B.E., Guyon I.M. and Vapnik V. (1992): A training algorithm for optimal margin classifiers. — Proc. 5th Ann. ACM Workshop Computational Learning Theory, Pittsburgh, USA, pp. 144–152.
[3] Czogała E. and Łęski J.M. (2000): Fuzzy and Neuro-Fuzzy Intelligent Systems.—Heidelberg: Physica-Verlag.
[4] Duda R.O. and Hart P.E. (1973): Pattern Classification and Scene Analysis.—New York: Wiley.
[5] Gantmacher F.R. (1959): The Theory of Matrices.—New York: Chelsea Publ.
[6] Haykin S. (1999): Neural Networks. A Comprehensive Foundation.— Upper Saddle River: Prentice-Hall.
[7] Ho Y.-C. and Kashyap R.L. (1965): An algorithm for linear inequalities and its applications. — IEEE Trans. Elec. Comp., Vol. 14, No. 5, pp. 683–688.
[8] Ho Y.-C. and Kashyap R.L. (1966): A class of iterative procedures for linear inequalities. — SIAM J. Control., Vol. 4, No. 2, pp. 112–115.
[9] Huber P.J. (1981): Robust Statistics.—New York: Wiley.
[10] Łęski J.M. (2003a): Ho-Kashyap classifier with generalization control.—Pattern Recogn. Lett., Vol. 24, No. 2, pp. 2281–2290.
[11] Łęski J.M. (2003b): Fuzzy if-then rule-based nonlinear classifier. — Int. J. Appl. Math. Comput. Sci., Vol. 13, No. 2, pp. 101–109.
[12] Łęski J.M. (2004): An " -margin nonlinear classifier based on if-then rules. — IEEE Trans. Sys. Man Cybern. – Part B: Cybernet., Vol. 34, No. 1, pp. 68–76.
[13] Mika S., Rätsch G., Weston J., Schölkopf B. and Müller K.-R. (1999): Fisher discriminant analysis with kernels, In: Neural Networks in Signal Processing IX (Y.H. Hu, J. Larsen, E. Wilson and S. Douglas, Eds.). — New York: IEEE Press, pp. 41–48.
[14] Miller D., Rao A.V., Rose K. and Gersho A. (1996): A global optimization technique for statistical classifier design. — IEEE Trans. Signal Process., Vol. 44, No. 12, pp. 3108–3121.
[15] Müller K.-R., Mika S., Rätsch G., Tsuda K. and Schölkopf B. (2001): An introduction to kernel-based learning algorithms. — IEEE Trans. Neural Netw., Vol. 12, No. 2, pp. 181–202.
[16] Rätsch G., Onoda T. and Müller K.-R. (2001): Soft margins for AdaBoost. — Mach. Learn., Vol. 42, No. 3, pp. 287–320.
[17] Ripley B.D. (1996): Pattern Recognition and Neural Networks. — Cambridge: Cambridge University Press.
[18] Schölkopf B., Smola A.J. and Müller K.-R. (1998): Nonlinear component analysis as a kernel eigenvalue problem. — Neural Comput., Vol. 10, No. 6, pp. 1299–1319.
[19] Schölkopf B., Burges C.J.C. and Smola A.J. (1999): Advances in Kernel Methods – Support Vector Machine. — Cambridge: MIT Press.
[20] Schölkopf B., Mika S., Burges C.J.C., Knirsch P., Müller K.-R., Rätsch G. and Smola A.J. (1999a): Input space vs. feature space in kernel-based methods. —IEEE Trans. Neural Netw., Vol. 10, No. 5, pp. 1000–1017.
[21] Tipping M.E. (2001): Sparse Bayesian learning and the relevance vector machine, — J. Mach. Learn. Res., Vol. 1, No. 2, pp. 211–244.
[22] Tou J.T. and Gonzalez R.C. (1974): Pattern Recognition Principles. — London: Adison-Wesley.
[23] Vapnik V. (1995): The Nature of Statistical Learning Theory. — New York: Springer-Verlag.
[24] Vapnik V. (1998): Statistical Learning Theory. — New York: Wiley.
[25] Vapnik V. (1999): An Overview of Statistical Learning Theory. —IEEE Trans. Neural Netw., Vol. 10, No. 5, pp. 988–999.
[26] Webb A. (1999): Statistical Pattern Recognition. — London: Arnold.