Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2004_14_1_a3, author = {Li, Y. and Kummert, A. and Frommer, A.}, title = {A linear programming based analysis of the {CP-rank} of completely positive matrices}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {25--31}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a3/} }
TY - JOUR AU - Li, Y. AU - Kummert, A. AU - Frommer, A. TI - A linear programming based analysis of the CP-rank of completely positive matrices JO - International Journal of Applied Mathematics and Computer Science PY - 2004 SP - 25 EP - 31 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a3/ LA - en ID - IJAMCS_2004_14_1_a3 ER -
%0 Journal Article %A Li, Y. %A Kummert, A. %A Frommer, A. %T A linear programming based analysis of the CP-rank of completely positive matrices %J International Journal of Applied Mathematics and Computer Science %D 2004 %P 25-31 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a3/ %G en %F IJAMCS_2004_14_1_a3
Li, Y.; Kummert, A.; Frommer, A. A linear programming based analysis of the CP-rank of completely positive matrices. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 1, pp. 25-31. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a3/
[1] Barioli F. and Berman A. (2003): The maximal cp-rank of rank k completely positive matrices. — Linear Algebra Appl., Vol. 363, pp. 17–33.
[2] Berman A. and Plemmons R. (1979): Nonnegative Matrices in the Mathematical Sciences. — New York: Academic Press.
[3] Berman A. and Shaked-Monderer N. (2003): Completely Positive Matrices. —New York: World Scientific.
[4] Berman A. (1993): Completely positive graphs, In: Combinatorial and Graph-Theoretical Problems in Linear Algebra (R.A. Brnaldi, S. Friedland and V. Klee, Eds.). — New York: Springer, pp. 229–233.
[5] Drew J.H., Johnson C.R. and Loewy R. (1994): Completely positive matrices associated with M-matrices. — Linear and Multilinear Algebra, Vol. 37, No. 4, pp. 303–310.
[6] Drew J.H. and Johnson C.R. (1996): The no long odd cycle theorem for completely positive matrices, In: Random Discrete Structures (D. Aldous and R. Premantle, Eds.). — New York: Springer, pp. 103–115.
[7] Golub G.H. and Van Loan Ch.F. (1989): Matrix Computations. —Baltimore: J. Hopkins University Press.
[8] Glashoff K. and Gustafson S. (1983): Linear Optimization and Approximation. —New York: Springer.
[9] Gray L.J. and Wilson D.G. (1980): Nonnegative factorization of positive semidefinite nonnegative matrices. — Linear Algebra Appl., Vol. 31.
[10] Hall Jr. M. and Newman M. (1963): Copositive and completely positive quadratic forms.—Proc. Cambridge Philos. Soc., Vol. 59, pp. 329–339.
[11] Hall Jr. M. (1967): Combinatorial Theory. — Lexington: Blaisdell.
[12] Hanna J. and Laffey T.J. (1983): Nonnegative factorization of completely positive matrices. — Linear Algebra Appl., Vol. 55, pp. 1–9.
[13] Karloff H. (1991): Linear Programming.—Boston: Birkhäuser.
[14] Kaykobad M. (1988): On nonnegative factorization of matrices. —Linear Algebra Appl., Vol. 96, pp. 27–33.
[15] Kelly C. (1994): A test of the markovian model of DNA evolution. —Biometrics, Vol. 50, No. 3, pp. 653–664.
[16] Kogan N. and Berman A. (1993): Characterization of completely positive graphs.—Discrete Math., Vol. 114, No. 1–3, pp. 297–304.